
SENIOR DESIGN DEC’24 TEAM 09

Multicore Operational Analysis 
Tooling (MOAT)

Anthony Manschula, Alexander Bashara, Joseph Dicklin, Hankel Haldin
Client: The Boeing Company
Advisors: Steve VanderLeest (Boeing), Joe Zambreno (ISU), Phillip Jones (ISU)



Department of Electrical and Computer Engineering 2

• Motivation: Increasing computational demand of avionics programs necessitates higher 

performance multicore systems

• Problem: Such systems can exhibit multicore interference between shared resources

o Can cause system to stall for access and introduce unpredictable delay

o Practical example: Radio control program interferes with flight control program

• Airworthiness certification: Must quantify the worst-case execution time in the 

context of high-interference scenarios

• This project aims to create a flexible tool for analyzing the performance of programs on 

multicore embedded systems in high interference situations

Problem Statement



Department of Electrical and Computer Engineering 3

Market Survey & Research

Multicore
Operational

Analysis 
Tool (MOAT)

RapiDaemon MASTECS OTAWA (Open 
Tool for 

Adaptive WCET
Analysis)

Multicore Test
Harness

Pros Open 
source, built with
modern
hardware in mind

Designed by a team 
of professional
engineers,
specifically, for
compliance testing

Offers timing 
analysis software 
and multicore 
performance 
consulting

Open 
source, supports
several ISAs (e.g., 
ARM, RISC-V, etc.)

Open source & has 
good instructions

Cons Produced under 
tight time 
deadlines

Closed source 
& expensive

Potential 
portability issues to 
North America

No recent builds, 
not well-known

Relatively old;
development
stopped five years 
ago

Figure 1: Market research summary



Department of Electrical and Computer Engineering 4

Conceptual Sketch

Figure 2: High-level view of the subsystems that comprise our design



Department of Electrical and Computer Engineering 5

• Toolset must thoroughly and methodically stress the system in a reproducible way

• Toolset must focus on major points of resource contention (Shared data caches, 

memory bandwidth, I/O bus usage, etc.)

• Accurately simulate potential worst-case scenarios (i.e., simulate a rogue process using 

too much CPU time/memory/I/O bandwidth)

• Toolset must collect and analyze performance data to facilitate analysis of system 

performance and factors contributing to program worst-case execution time

Functional Requirements



Department of Electrical and Computer Engineering 6

• Architecture - System must implement a processor based on the ARMv8 instruction 

set and have two or more cores

• Form-factor - Single-board computer (Raspberry Pi, Pine64 family, etc.), or FPGA 

board with Xilinx UltraScale+ MPSoC (Xilinx ZCU family or similar)

• Hypervisor – Our design must use a type 1 hypervisor (Xen) to partition underlying 

system resources

Non-Functional Requirements



Department of Electrical and Computer Engineering 7

User Knowledge Requirements:

• Working understanding of Linux environments and how they are structured in the 

context of embedded systems

• Worst-case execution time and its influencing factors

• Familiarity with multi-core computer architectures, caching, memory, and I/O

User Interface Requirements:

• Command-line utility for automated testing

• Ability to run single tests manually or from a predefined sequence

Other Constraints and Considerations



Department of Electrical and Computer Engineering 8

System Design



Department of Electrical and Computer Engineering 9

• Hardware – Processor cores, memory, I/O, etc. - Xilinx ZCU106 FPGA Board

• Xen Hypervisor – Manages hardware resource allocation to domains (guests) running 

on the system

• Domain 0 (Dom0) - Linux environment manages configuration and operation of guest 

domains (DomU's), runs user interface utilities, and performs system performance 

monitoring

• Guest Domains (DomU) – Hosts interference generators

• Interference Generators – Generate resource contention in areas as requested by the 

test, such as level 2 processor cache or main memory

• User Interface – Manage test flow, analyze test execution results, generate visuals

Component Decomposition



Department of Electrical and Computer Engineering 10

Block-Level System 
Diagram

The system is broken up into 

SoC hardware, Xen and its 

associated DomU’s, the Linux 

kernel, and the external host 

machine used for data analysis

Figure 3: Block-Level System Diagram



Department of Electrical and Computer Engineering 11

• The Xen Image was built using Yocto and PetaLinux tools

o Frameworks for Embedded Linux on ARM

o Not trivial: Including Xen in these builds requires 

hardware-specific changes

o Utilized Ubuntu Base as the guest OS for DomU’s

o Lightweight, minimal overhead (important)

o Modified to include software relevant to stress testing

o Thinking forward: Documented build processes for potential 

future groups

Embedded Software

Figure 4: Image configuration and build process



Department of Electrical and Computer Engineering 12

How does our Design Generate Interference?

• Caused by simultaneous utilization of shared resources both on and off the SoC by 

different processes (“architectural interference”)

o e.g., Cache, Memory, I/O

• Interference – Stress-NG

o Open-source performance testing library

• UI parses test definition for interference type on a per-core basis (0 to 3 cores running)

o DomU assigned to that given core is started

o Parameters are passed to the DomU to initiate contention generation



Department of Electrical and Computer Engineering 13

Figure 5: XCZU7EV MPSoC Shared Resource Diagram



Department of Electrical and Computer Engineering 14

How does the User Interact with the Design?

• “Host” device communicates 

with the hardware via serial

• Test management is done via 

MOATerm - Multicore 

Operational Analysis Terminal

• Manual input of one-off 

input of parameters

• Batch testing via YAML 

test definition
Figure 6: Automated YAML file parsing​



Department of Electrical and Computer Engineering 15

Testing and Results



Department of Electrical and Computer Engineering 16

Data Analysis

Figure 7: Raw Test Output​

• Victim execution data is stored in YAML 

format in Dom0

• Contains performance metrics from 

each test loop (wall clock time, number 

of computations, etc.)

• Execution data is parsed to reveal averages, 

standard deviations, and worst-case 

execution times for a given run with varying 

levels of resource contention Figure 8: Statistics Parser Output​



Department of Electrical and Computer Engineering 17

Figure 9: Parser graph output for a bandwidth-oriented victim 

when subjected to varying levels of memory bandwidth 

contention

Figure 10: Parser graph output for a matrix add victim when subjected 

to varying levels of L2 cache contention



Department of Electrical and Computer Engineering 18

Figure 11: Histogram of the Cache Interference over runs 

with multiple cores



Department of Electrical and Computer Engineering 19

Conclusion



Department of Electrical and Computer Engineering 20

Current Project Status

• Able to generate system interference on one, two, or three cores

o Uses Stress-NG for both interference generation and base test cases

• Provides a CLI (Command Line Interface) for direct serial terminal access on the board 

or access to the testing suite

o Can run tests manually or automatically via parsing sequences from a YAML file

• Currently open source on GitHub per request of client

o https://github.com/2Manchu/MOAT 

o Provides source code and tool documentation

https://github.com/2Manchu/MOAT


Department of Electrical and Computer Engineering 21

Opportunities for Future Work

• Evaluate techniques to mitigate interference

• Create a graphical user interface

• Explore other forms of interference

o Cache Coherency

o Other forms of I/O



Department of Electrical and Computer Engineering 22

Questions?



Department of Electrical and Computer Engineering 23

Supplemental Material



Department of Electrical and Computer Engineering 24

Hardware Selection Matrix

• Selection process involved evaluating 

several different platforms for cost, 

features, and support for the tools 

necessary for our project



Department of Electrical and Computer Engineering 25

Users

• Avionics Engineers

o Responsible for developing and validating avionics systems

o Need a stress testing tool for their ARM-based hardware development platform

▪ Allows for effective validation of their work as engineers

• Avionics Engineering Managers

o Manage a team of Avionics Engineers

o Provide evidence that the projects they are managing can be certified under 

military and civilian authority



Department of Electrical and Computer Engineering 26

Important Engineering Standards and Advisories

• FAA AC20-193

o This advisory is concerned with the use and compliance of multi-core processors 

in avionics systems.

• CAST-32A

o Position paper arguing on safety, performance, and integrity of airborne software 

operating on multicore systems.

• ARINC 653

o Defines acceptable methods of resource partitioning on hardware running 

avionics programs



Department of Electrical and Computer Engineering 27

Task Responsibility and Contributions

• Anthony Manschula – Project Coordinator and Memory Engineer

• Alexander Bashara – Embedded and Cache Engineer

• Hankel Haldin – Platform Bring-up Engineer

• Joseph Dicklin – I/O Engineer



Department of Electrical and Computer Engineering 28

Users

• Avionics Engineers

o Responsible for developing and validating avionics systems

o Need a stress testing tool for their ARM-based hardware development platform

▪ Allows for effective validation of their work as engineers

• Avionics Engineering Managers

o Manage a team of Avionics Engineers

o Provide evidence that the projects they are managing can be certified under 

military and civilian authority


	Multicore Operational Analysis Tooling (MOAT)
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

	SUPPLEMENTAL MATERIAL
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28


