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• Motivation: Increasing computational demand of avionics programs necessitates higher 

performance multicore systems

• Problem: Such systems can exhibit multicore interference between shared resources

o Can cause system to stall for access and introduce unpredictable delay

o Practical example: Radio control program interferes with flight control program

• Airworthiness certification: Must quantify the worst-case execution time in the 

context of high-interference scenarios

• This project aims to create a flexible tool for analyzing the performance of programs on 

multicore embedded systems in high interference situations

Problem Statement
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Market Survey & Research

Multicore
Operational

Analysis 
Tool (MOAT)

RapiDaemon MASTECS OTAWA (Open 
Tool for 

Adaptive WCET
Analysis)

Multicore Test
Harness

Pros Open 
source, built with
modern
hardware in mind

Designed by a team 
of professional
engineers,
specifically, for
compliance testing

Offers timing 
analysis software 
and multicore 
performance 
consulting

Open 
source, supports
several ISAs (e.g., 
ARM, RISC-V, etc.)

Open source & has 
good instructions

Cons Produced under 
tight time 
deadlines

Closed source 
& expensive

Potential 
portability issues to 
North America

No recent builds, 
not well-known

Relatively old;
development
stopped five years 
ago

Figure 1: Market research summary
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Conceptual Sketch

Figure 2: High-level view of the subsystems that comprise our design
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• Toolset must thoroughly and methodically stress the system in a reproducible way

• Toolset must focus on major points of resource contention (Shared data caches, 

memory bandwidth, I/O bus usage, etc.)

• Accurately simulate potential worst-case scenarios (i.e., simulate a rogue process using 

too much CPU time/memory/I/O bandwidth)

• Toolset must collect and analyze performance data to facilitate analysis of system 

performance and factors contributing to program worst-case execution time

Functional Requirements
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• Architecture - System must implement a processor based on the ARMv8 instruction 

set and have two or more cores

• Form-factor - Single-board computer (Raspberry Pi, Pine64 family, etc.), or FPGA 

board with Xilinx UltraScale+ MPSoC (Xilinx ZCU family or similar)

• Hypervisor – Our design must use a type 1 hypervisor (Xen) to partition underlying 

system resources

Non-Functional Requirements
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User Knowledge Requirements:

• Working understanding of Linux environments and how they are structured in the 

context of embedded systems

• Worst-case execution time and its influencing factors

• Familiarity with multi-core computer architectures, caching, memory, and I/O

User Interface Requirements:

• Command-line utility for automated testing

• Ability to run single tests manually or from a predefined sequence

Other Constraints and Considerations
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System Design
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• Hardware – Processor cores, memory, I/O, etc. - Xilinx ZCU106 FPGA Board

• Xen Hypervisor – Manages hardware resource allocation to domains (guests) running 

on the system

• Domain 0 (Dom0) - Linux environment manages configuration and operation of guest 

domains (DomU's), runs user interface utilities, and performs system performance 

monitoring

• Guest Domains (DomU) – Hosts interference generators

• Interference Generators – Generate resource contention in areas as requested by the 

test, such as level 2 processor cache or main memory

• User Interface – Manage test flow, analyze test execution results, generate visuals

Component Decomposition
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Block-Level System 
Diagram

The system is broken up into 

SoC hardware, Xen and its 

associated DomU’s, the Linux 

kernel, and the external host 

machine used for data analysis

Figure 3: Block-Level System Diagram
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• The Xen Image was built using Yocto and PetaLinux tools

o Frameworks for Embedded Linux on ARM

o Not trivial: Including Xen in these builds requires 

hardware-specific changes

o Utilized Ubuntu Base as the guest OS for DomU’s

o Lightweight, minimal overhead (important)

o Modified to include software relevant to stress testing

o Thinking forward: Documented build processes for potential 

future groups

Embedded Software

Figure 4: Image configuration and build process
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How does our Design Generate Interference?

• Caused by simultaneous utilization of shared resources both on and off the SoC by 

different processes (“architectural interference”)

o e.g., Cache, Memory, I/O

• Interference – Stress-NG

o Open-source performance testing library

• UI parses test definition for interference type on a per-core basis (0 to 3 cores running)

o DomU assigned to that given core is started

o Parameters are passed to the DomU to initiate contention generation
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Figure 5: XCZU7EV MPSoC Shared Resource Diagram
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How does the User Interact with the Design?

• “Host” device communicates 

with the hardware via serial

• Test management is done via 

MOATerm - Multicore 

Operational Analysis Terminal

• Manual input of one-off 

input of parameters

• Batch testing via YAML 

test definition
Figure 6: Automated YAML file parsing​
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Testing and Results
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Data Analysis

Figure 7: Raw Test Output​

• Victim execution data is stored in YAML 

format in Dom0

• Contains performance metrics from 

each test loop (wall clock time, number 

of computations, etc.)

• Execution data is parsed to reveal averages, 

standard deviations, and worst-case 

execution times for a given run with varying 

levels of resource contention Figure 8: Statistics Parser Output​
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Figure 9: Parser graph output for a bandwidth-oriented victim 

when subjected to varying levels of memory bandwidth 

contention

Figure 10: Parser graph output for a matrix add victim when subjected 

to varying levels of L2 cache contention
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Figure 11: Histogram of the Cache Interference over runs 

with multiple cores
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Conclusion
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Current Project Status

• Able to generate system interference on one, two, or three cores

o Uses Stress-NG for both interference generation and base test cases

• Provides a CLI (Command Line Interface) for direct serial terminal access on the board 

or access to the testing suite

o Can run tests manually or automatically via parsing sequences from a YAML file

• Currently open source on GitHub per request of client

o https://github.com/2Manchu/MOAT 

o Provides source code and tool documentation

https://github.com/2Manchu/MOAT
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Opportunities for Future Work

• Evaluate techniques to mitigate interference

• Create a graphical user interface

• Explore other forms of interference

o Cache Coherency

o Other forms of I/O
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Questions?
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Supplemental Material
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Hardware Selection Matrix

• Selection process involved evaluating 

several different platforms for cost, 

features, and support for the tools 

necessary for our project
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Users

• Avionics Engineers

o Responsible for developing and validating avionics systems

o Need a stress testing tool for their ARM-based hardware development platform

▪ Allows for effective validation of their work as engineers

• Avionics Engineering Managers

o Manage a team of Avionics Engineers

o Provide evidence that the projects they are managing can be certified under 

military and civilian authority
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Important Engineering Standards and Advisories

• FAA AC20-193

o This advisory is concerned with the use and compliance of multi-core processors 

in avionics systems.

• CAST-32A

o Position paper arguing on safety, performance, and integrity of airborne software 

operating on multicore systems.

• ARINC 653

o Defines acceptable methods of resource partitioning on hardware running 

avionics programs
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Task Responsibility and Contributions

• Anthony Manschula – Project Coordinator and Memory Engineer

• Alexander Bashara – Embedded and Cache Engineer

• Hankel Haldin – Platform Bring-up Engineer

• Joseph Dicklin – I/O Engineer
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Users

• Avionics Engineers

o Responsible for developing and validating avionics systems

o Need a stress testing tool for their ARM-based hardware development platform

▪ Allows for effective validation of their work as engineers

• Avionics Engineering Managers

o Manage a team of Avionics Engineers

o Provide evidence that the projects they are managing can be certified under 

military and civilian authority
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