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Executive Summary 

The increasing computational demand of modern avionics programs necessitates higher 

performance hardware platforms to support them. Among the various avenues that exist, one 

approach to achieving higher application performance is to utilize a multicore system. However, 

incorporating such systems into safety-critical applications like avionics presents a unique set of 

challenges when it comes to their airworthiness certification. The equipment manufacturer must 

be able to prove that the system is resilient to performance degradation due to shared resource 

“crosstalk” (also known as resource contention) from applications running on the platform’s 

processor cores. Our team was tasked with building a test framework that would induce sufficient 

resource contention on a target piece of hardware in order to facilitate more efficient airworthiness 

testing of embedded Linux systems. Boeing presented our team with several requirements, 

including processor architecture, system form factor, system resource partitioning approach, and 

testing framework design. The final design utilizes a hardware platform incorporating the 

recommended ARMv8 processor architecture, and supports the Xilinx PetaLinux framework, 

allowing for streamlined system image revisions. The system image includes the Xen hypervisor, 

which enables the user to partition execution of different programs to distinct processor cores and 

quantify the effects of resource contention on worst-case program execution time. Our solution 

includes a front end that allows for efficient collection of execution time metrics across a variety of 

program types and resource contention methods. The current version of our system meets our 

clients’ needs by providing them with a flexible framework that quantifies the effects of system 

resource contention on program execution time. Given that our solution is open-source, future 

developers may wish to make improvements in several areas, including analysis of contention 

mitigation methods, inclusion of a graphical interface for testing, and refinements to the results 

analysis tools. Overall, our solution is an important step in the landscape of modern multicore 

systems analysis, and its open-source nature allows for its continued use and improvement. 
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Learning Summary 
 

Development Standards & Practices Used 

• FAA: AC 20-193 

• IEEE Code of Ethics 

• CAST-32A 

• SAE Aerospace Standards 

• RCTA/DO-178C 

• ASTM (American Society for Testing and Standards) 

• POSIX (Portable Operating System Interface) 

• ARINC 653 

• FACE (Future Airborne Capability Environment) 

• Waterfall & Agile Development Workflow 

Summary of Requirements 

Physical Requirements 

• Architecture: System must implement a processor based on the ARMv8 instruction set 

• Form-factor: Single-board computer (Raspberry Pi, Pine64 family, etc.), or FPGA board 

with Xilinx UltraScale+ MPSoC (Xilinx ZCU family or similar) 

User Knowledge Requirements 

• Working understanding of Linux environments and how they are structured in the context 

of embedded systems 

• Worst-case execution time and its influencing factors  

• Familiarity with multi-core computer architectures, caching, memory, and I/O  

• Provide documentation with a sufficient level of detail to allow the user to learn any of the 

above at a high level  

Functional and Technical Requirements  

• Toolset must thoroughly and methodically stress the system in a reproducible way 

• Toolset must focus on major points of resource contention (processor time, memory usage, 

IO bus usage, etc.)  

• Accurately produce potential worst-case scenarios (rogue process uses too much CPU 

time/memory/IO bandwidth)  

• Toolset must collect and analyze performance data to demonstrate an upper bound on 

worst-case execution time for our platform  

User Interface and Experience Requirements 

• Command-line utilities are documented with a level of detail sufficient to allow users with 

less technical knowledge to use the tool effectively 

• Provide a user-friendly GUI for managing and interpreting test results 

• Ensure consistent functionality across the GUI and command line tools 
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Applicable Courses from Iowa State University Curriculum  
Computer Engineering  

• CPRE 1850 – Introduction to Computer Engineering and Problem Solving in C  
• CPRE 2880 – Embedded Systems I: Introduction  
• CPRE 3080 – Operating Systems: Principles and Practice  
• CPRE 3810 – Computer Organization and Assembly-Level Programming  
• CPRE 4580 – Real Time Systems 
• CPRE 4880 – Embedded Systems Design  
• CPRE 5810 – Computer Systems Architecture  

Computer Science  
• COMS 3110 – Introduction to the Design and Analysis of Algorithms   
• COMS 4150 – Software System Safety 

New Skills/Knowledge acquired that was not taught in courses 

• Application performance profiling 

• Stress-NG 

• Multi-core computer architecture 

• Virtualization with the Xen hypervisor 

• Creating embedded Linux images with PetaLinux 
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Important Definitions and Terms 

I/O – Input/Output, referring to methods of transferring data into and out of a system.  

System-on-Chip (SoC) – Processor, memory, I/O, and graphics processing (sometimes) hardware 

all housed on a single piece of silicon.  

Worst-Case Execution Time (WCET) – Maximum amount of time a program can be expected to 

take to execute under a set of system conditions designed to produce a worst-case load scenario.  

ARMv8 – Version 8 of the ARM Instruction Set, which defines important characteristics of 

processors that implement it, such as supported data types, register configurations, and memory 

management.  

Main Memory/DRAM – Large pool of reasonably fast volatile (meaning values are erased after 

power loss) storage that stores instructions and data of programs currently running on the system.  

Cache – Small pool of very fast volatile storage that the processor can use to store frequently used 

data items and program instructions instead of searching for them in main memory. There may be 

multiple levels of cache in a processor, with some being shared between all cores, and others being 

private to each core.  

Datapath – A path taken by a request from a particular component before reaching its destination 

component (for instance, the CPU to DRAM data path might be used by a request made by the 

processor to retrieve a value from main memory).  

Virtual Machine (VM)– A software emulation of a computer’s physical hardware. High speed VMs 

(such as the one the team is working with) may require support for this process in hardware 

through “virtualization hooks”.  

Type 1 Hypervisor – A hypervisor manages the allocation of physical hardware to all virtual 

machines running on a system. Type 1 hypervisors have lower resource overhead and require that 

they are the highest-privileged level of software running on the system (i.e., there is no other 

software, such as an operating system, operating between it and the physical hardware).  

Xen – Open-source Type 1 hypervisor with ARMv8-based system support.  

Field Programmable Gate Array (FPGA) – A special integrated circuit that contains 

reprogrammable logic. 
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1. Introduction 

1.1. PROBLEM STATEMENT 

Avionics systems are responsible for controlling many safety-critical aspects of modern airplanes, 

such as engine management modules and flight envelope protections. As these systems become 

increasingly computerized, the amount of input data they consume and act upon becomes 

progressively larger, thereby increasing the necessary amount of computing power avionics systems 

must possess. While there are multiple avenues to increasing performance in such a system, the 

approach this project focuses on is the use of a multicore processing platform, due to their relative 

ubiquity in mainstream computing. However, the use of multicore processing in safety-critical 

flight systems presents additional challenges over single-core processing in the way of flight 

certification. Because multicore systems may have several distinct programs running on multiple 

processing cores, those programs may try to simultaneously access the system’s shared resources in 

such a way that is harmful to the system’s performance (known as “resource contention” or 

“interference”). For such systems to be certified for flight, the manufacturer must be able to show 

that the system’s performance degradation does not fall below a certain bound (i.e., the system may 

not slow down to a point that endangers the controllability or safety of the plane). The Boeing 

Company has communicated to us a need for an effective platform that allows for such 

quantification of performance degradation experienced in multicore systems. Within multicore 

systems, it is important to test the I/O (input/output) bandwidth, cache interference, CPU (central 

processing unit) performance and main memory performance under a worst-case set of system load 

conditions to determine how program execution time is affected. Such a tool is essential to safe 

operation of multicore systems in safety-critical environments. 

This tool allows users to quantitatively identify worst-case execution times (WCET) in which 

resource contention is extreme. For those who are unfamiliar, worst-case execution time refers to 

the maximum amount of time a given process can be expected to take under worst-case system 

conditions. This is essential for avionics certification, as it provides a definitive way to prove that 

performance degradation is within an acceptable bound, or that mitigations can be applied to move 

the execution time inside of that bound. Overall, the desired outcome of this project is a stress-

testing platform that will allow us to pinpoint areas of resource contention, apply multicore stress 

via those points, and apply relevant performance mitigations to the system to arrive at a WCET for 

our reference hardware platform. 

1.2. INTENDED USERS 

When designing our empathy maps, we were able to identify several key stakeholders/users directly 

affected by our design project. This includes the Boeing avionics development team working hands 

on with the multicore stress testing platform, and the Boeing team managers in charge of a 

technical avionics testing team and ensuring regulatory compliance. 

Looking at the user personas for each group, we can see that the avionics development team can be 

described as a group that manages Linux avionics development and validation for Boeing aircraft. 

They would need a system stress testing tool developed on an ARM-based platform with 

performance-related metrics like execution time, resource usages, system temperatures, etc. that is 

easily accessible. As this user group is directly involved in the testing of in-development avionics, a 

stress test tool is of the utmost value to the team.  
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Looking at another user group, the Boeing managers, although not needing a stress testing tool for 

the success of their role as a managers, they would need a stress tool easily accessible to their 

project engineers such that they can ensure their systems can be flight-certified under civilian or 

military authority. Again, as stated by the development team, this tool ensures the success of their 

in-development product, making the value extremely high for the company. When considering this 

user group from an economic standpoint, the Boeing manager role consists of client-to-team 

communication (e.g., economic considerations). Although less important than the safety 

considerations a product such as this brings up, the economic factors surrounding a stress tool are 

still important. 
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2. Requirements, Constraints and Standards 

2.1. REQUIREMENTS AND CONSTRAINTS 

Physical/Resource Requirements 
• ARMv8 processor subsystem 

 Choosing a hardware platform using a processor implementing the ARMv8 
instruction set is critical due to its widespread usage across applications. 

• Form-factor: Single-board computer (Raspberry Pi, Pine64 family, etc.) or FPGA board 
implementing a Xilinx MPSoC (Xilinx ZCU family) 

 The single-board computer form factor is useful in that it keeps costs down and 
the hardware is easy to find. However, certain FPGA boards are also acceptable if 
they implement an ARMv8 processor subsystem. 

 
General User Knowledge Requirements  

• Linux environments 
 Both the developers and the users must be comfortable working in Linux 

environments, as this is where tool development and usage will take place. 
• Worst-case execution time  and its influencing factors 

 Developers and users must be familiar with this concept, as it is the core metric 
that this project aims to determine. They must understand how both program and 
hardware architecture may influence it, and how to utilize those factors to produce 
a thorough measurement. 

• Familiarity with multi-core computer architectures 
 To create tools and take measurements to determine WCET for a given multicore 

system, the developers must understand the data paths between various 
components in the system, how they interact, and how to abuse them. 
Additionally, to truly understand the meaning of the results produced by the tools, 
users must possess some amount of knowledge of the underlying hardware. 

• Documentation providing a sufficient level of detail to allow the user to learn any of the 
above at a high level. 

Since our tool will be used by both technical and nontechnical user groups, a comprehensive set of 
documentation is essential. This will consist of documentation regarding how to build a system 
image, use the tools, and view/analyze results. Additionally, as we will be handing off the project to 
another group, clear communication of our progress to them is critical for a smooth transition. 
 
Functional/Technical Requirements   

• Properly and methodically stress the system 

• Since the toolset applies to verifying hardware for a safety-critical setting, it is important 
that stress applied to the system is as intense as possible. If it is not, the measurement of 
WCET may be based on data that were collected with a flawed methodology.  

• Identify major points of resource contention (processor time, memory usage, I/O bus 
usage, etc.). 

• The team must consider all possible avenues that resource contention could arise from. 
Showing evidence of thorough testing is important in being issued an Federal Aviation 
Administration (FAA) certification. 

• Demonstrate an upper bound on worst-case execution time for our platform. 
• The tool set must provide an effective way of measuring and analyzing performance 

metrics of various runs, both with and without the system under stress. 
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User Interface (UI) Requirements  
• Develop a well-documented command line tool to interface with our design 

 The command line tool can be used to interact with and initiate runs with the 
toolset. Due to inclusion of several base programs and stress options, the team 
needs clear documentation for acceptable values and the corresponding behavior 
that they are linked to. 

• Provide a user-friendly Graphical User Interface (GUI) for managing and interpreting test 
results, time providing 

 A GUI is much more friendly to look at than text output from a command line. The 
GUI should clearly present the results of a set of tests in a straightforward manner. 

2.2. ENGINEERING Standards 

FAA: AC 20-193   

• This standard is defined by the U.S. Department of Transportation. It is concerned with the 

use of multi-core processors in avionics systems. Our design is directly applicable to this 

area, hence its inclusion.    

IEEE Code of Ethics   

• While this standard applies to any engineering effort, our design must ensure the public's 

safety. Our design provides critical information to systems whose failure could lead to 

severe injury or death.   

CAST-32A   

• This document outlines the aspects of multi-core systems of concern to the safety and 

performance of avionics systems and will help guide the aspects of testing that our toolset 

needs to achieve.  

SAE Aerospace Standards   

• These standards define the safety and reliability of various aspects of avionics systems. Our 

design will stress test multi-core systems that will support avionics systems like controls 

and communications.   

RCTA/DO-178C   

• This standard is concerned with the quality of software used in avionics systems. It defines 

a safety assessment process that categorizes software into five tiers of criticality. Our 

design must adequately characterize a hardware platform to assess the criticality of a 

software fault or failure.   

ASTM (American Society for Testing and Standards)   

• ASTM publishes technical standards that are directly applicable to many engineering 

efforts, including avionics.   

POSIX (Portable Operating System Interface)   
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• POSIX defines a set of standards that ensure compatibility between operating systems. Our 

design will be a part of a larger set of software tools and systems. It should therefore be 

able to interface with these tools in a standardized way.   

ARINC 653   

• This standard is concerned with the space and time partitioning of safety critical avionics 

systems. Our design must be able to isolate and test distinct aspects of a multi-core system, 

like CPU usage, memory, and bus traffic to inform the decisions made by this standard.   

FACE (Future Airborne Capability Environment)   

• This standard defines an avionics environment for military airborne platforms. It is 

concerned with making real-time safety-critical computing applications more robust, 

portable, and secure. This is the end goal of our design. 
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Figure 1: Task Decomposition Chart. Boxes in the second row correspond to a major milestone in our project, with the boxes 

under corresponding to sub-tasks needed to achieve these milestones. Each sub-task is dependent on the task above it. 

3. Project Plan 

3.1. PROJECT MANAGEMENT/TRACKING PROCEDURES 

Our project uses a hybrid management style, utilizing both waterfall and agile development 

strategies. This has allowed us to plan out the entire project broadly, then use agile development 

strategies to focus on week-to-week goals to meet broad deadlines. To achieve these goals, we are 

using Git to manage our code and tracking issues using Gitlab Issues. We also participate in weekly 

status meetings with our client, Boeing, to make sure that we are on the right track and that Boeing 

is happy with our progress. These strategies allow us to make consistent progress and track where 

we are relative to our goals. 

3.2. TASK DECOMPOSITION 

We divided our project into major parts, then subdivided those parts into smaller parts that could 

be accomplished by one or two team members. This strategy integrates well with our management 

and tracking procedures. Figure 1 below details all the tasks that compose our project.  

 

 

3.3. PROJECT PROPOSED MILESTONES, METRICS, AND EVALUATION CRITERIA 
Metrics/Evaluation Criteria:  

• Technical metrics:   
o Tool suite generates interference on all aspects of the hardware platform  

▪ Cache, memory, I/O buses, SIMD engines, etc.  
▪ Options should be configurable to service multiple different platforms  

o Worst-Case Execution Time (WCET) Criteria  
▪ Perform several experiments to generate interference under different types 

of victim programs 
▪ Use statistical analysis of execution time to determine an upper bound on 

WCET in various use cases 
o System resource usage 

▪ Characterize the underlying interference channel causing the WCET  
• Usability metrics: 



 15 

Figure 2: Semester 1 Project Timeline. 

o Users rate appearance and usability of the tool suite > 7 on a scale of [1 – 10]  
o Command-line version of the tool suite is as user friendly as GUI frontend  

Milestones:  
• Xen hypervisor is functional on our target development platform  
• Identify resource contention points on our target platform  
• Tools induce some amount of stress on the identified contention points  

• Automatic testing is possible via parsing of configuration files  

• Integration of testing and tools into one unified suite and made open source 

• Tools thoroughly induce stress on the identified contention points  
• Quantitatively prove mitigation tools improve performance of the system while contention 

is underway  
• Obtain a worst-case execution time for our system  
• Integration of testing and tools into one unified suite 

 

3.4. PROJECT TIMELINE/SCHEDULE 
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Figure 3: Semester 2 Project Timeline. 

 

 

 
The initial project schedule was broken down into several sections. These included hardware 
bringup, victim program development/research, introduction of resource contention on victim 
programs, implementation of methods to mitigate resource contentions, development of a test 
suite for easy and repeatable testing, and finalization of project documentation in preparation for 
the handoff. Initially, the team budgeted approximately 3-5 weeks for each major section, as we had 
determined that to be a reasonable estimate given the research we’d done on the problem. 
However, for reasons discussed in the coming sections, the hardware bring up and introduction of 
resource contention milestones took significantly longer than the team had anticipated, which led 
to revision of the team’s future milestones. 

3.5. RISKS AND RISK MANAGEMENT/MITIGATION 

Hardware selection:  
• Find compatible dev board  

o Risk: we struggle to find a board that meets our project’s needs  
o Probability: .80   
o Mitigation: acquire multiple boards (within budget) to ideally find one that works  
o Mitigation: we can emulate a hardware environment in Linux 
o This was a significant issue when the project was in its infancy. Ultimately, we 

overcame the problem by leveraging an industry standard dev board that was 
available to us through a research lab but would have otherwise been too 
expensive for the team to purchase outright. However, the team lost a substantial 
amount of time working with various boards before we found one that suited our 
needs. 

• Xen build environment  
o Risk: we face challenges building Xen & its toolchain for our platform  
o Probability: .75 
o Mitigation: team leverages industry experts at Boeing 
o The team encountered this issue as well during our efforts with our initial 

hardware, but due to our adoption of an industry-standard dev board, we were 
able to leverage their tools that made building Xen much more straightforward. 

• Verify Xen functionality  
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o Risk: Xen & and its toolchain do not work after installation  
o Probability: > .90  
o Mitigation: communicate our difficulties to our client to get unstuck early when 

we encounter issues  

• Create Xen build scripts  
o Risk: our set up is not easily replicable / portable to a script  
o Probability:  < .10  

• Risk: the selected hardware platform is incompatible with our client’s and project’s needs  
o Probability: > .80  
o Mitigation: Have multiple hardware options (e.g., RockPro64, RaspberryPi 4, 

ZCU106)  

• Risk: we encounter trouble installing Xen on our hardware platform  
o Probability: > .80  
o Mitigation: communicate our work and where we are stuck to the Boeing team to 

get unstuck  

Develop Base Cases:  
• Create Cache Base Case:  

o Risk: we cannot find all the relevant information for the cache for our given 
platform  

o Probability: .20 (we specifically chose platforms for which we would have this 
information)  

• Create Memory Base Case:  
o Risk: we cannot find all the relevant information for the memory configuration for 

our given platform  
o Probability: .20 (we specifically chose platforms for which we would have this 

information)  

• Create I/O Base Case:  
o Risk: we cannot find all relevant information for the I/O characteristics for our 

given platform  
o Probability: .20 (we specifically chose platforms for which we would have this 

information)  

• Collect Base Case Data:  
o Risk: we have no way to collect relevant metrics on the researched interference 

channels  
o Probability: .30  

Introduce Resource Contention:  
• CPU Cores (SIMD Engine)  

o Risk: properly implementing the interference generator is more time consuming 
than originally planned  

o Probability: .60  
o Mitigation: communicate our work and where we are block to the Boeing team to 

get unstuck  

• Cache Interference  
o Risk: properly implementing the interference generator is more time consuming 

than originally planned  
o Probability: .60  
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o Mitigation: communicate our work and where we are block to the Boeing team to 
get unstuck  

• Main Memory Bandwidth  
o Risk: properly implementing the interference generator is more time consuming 

than originally planned  
o Probability: .60  
o Mitigation: communicate our work and where we are block to the Boeing team to 

get unstuck  

• I/O bandwidth  
o Risk: properly implementing the interference generator is more time consuming 

than originally planned  
o Probability: .60  
o Mitigation: communicate our work and where we are block to the Boeing team to 

get unstuck  

• Collect Interference Data  
o Risk: our test base cases do not adequately stress the system (i.e., demonstrate 

WCET)  
o Probability: .60  
o Mitigation: we can use our client’s expertise in the given domain to increase the 

likelihood that our test cases demonstrate the WCET for our hardware platform  

Unify Tools and Stressors into One Toolset:  
• Create Open-Source Repository  

o Risk: we are not able to create a public repository due to NDA  
o Probability: > .50 (?)  
o Mitigation: we need to communicate with both Boeing and Iowa State University 

early on to determine which parts of the project can and cannot be open-sourced  

• Create Documentation  
o Risk: development of the project was not continuously documented, and 

knowledge is lost  
o Probability: .60  
o Mitigation: maintain light documentation of work throughout the project so it can 

be expanded on during this stage  

• Improve Usability  
o Risk: our tool is not intuitive to use for our user base  
o Probability: .70  
o Mitigation: perform a usability study with our Boeing clients to improve the 

usability of our project  

• Automated Scripts  
o Risk:  the scripts we produce are not able to be reused by users of the project  
o Probability: .20  

Handoff:  
• Boeing Approval  

o Risk: Boeing does not approve the handoff of our project due to NDA  
o Probability: .30  

• Iowa State Approval  
o Risk: Iowa State University does not approve the open sourcing of the project  
o Probability: .50  
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o Mitigation: Communicate with both Boeing and Iowa State University early on to 
determine what parts of the project can be open sourced  

• Determine Distribution  
o Risk: there is no platform we can publish our project on or no license that applies 

to its distribution  
o Probability: .10  

3.6. PERSONNEL EFFORT REQUIREMENTS 

Using the task decomposition table from 3.2, we separated the major tasks into the rows of the 
table below with the smaller sub-categories/tasks placed along the columns. Using our best 
judgement, we assigned rough time estimates for each sub task using the assumption that a single 
team member or two would be assigned to each task. 

 

Hardware 
Bring-up 

Develop 
Base Cases 

Introduce 
Resource 

Contention 

Unify Tools and 
Stressors to One 

Toolset 

Handoff 

Compatible 
Dev Boards 

(24hrs) 

Cache Base 
Case 

(15hrs) 

CPU Cores 

(25hrs) 

Create Open-Source 
Repository (15hrs) 

Boeing 
Approval 

(1hr) 

Xen Build 
(120hrs) 

Main 
Memory Base 
Case (15hrs) 

Cache 
Interference 

(25hrs) 

Create 
Documentation(60hrs) 

Iowa State 
Approval 

(1hr) 

Verify Xen 
(50hrs) 

I/O Base 
Case (15hrs) 

Main Memory 
Bandwidth 

(25hrs) 

Improve Usability 

(60hrs) 

Determine 
Distribution  

(4hr) 

Xen Scripts 
(30hrs) 

Collect Base 
Case Data 

(15hrs) 

I/O Bandwidth 
(25hrs) 

Automated Scripts 

(30hrs) 

 

Build 
Documents 

(15hrs) 

 
Collect Data 

(75hrs) 
Troubleshooting 

(80hrs) 

 

Figure 4: Personnel effort table along with hour estimations 

 
Total: 725 hours across 4 members 

3.7. OTHER RESOURCE REQUIREMENTS 

The main requirement for this project is an ARM development board that supports Xen Hypervisor; 

for our project that is a Xilinx ZCU106 development board and an SD Card. To use this tool, the 

user will also need a computer with a USB Type-A port to connect to the target ZCU106 and have 

the required software dependencies installed, such as a version of Python >= 3.10 and Pyserial. 
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4. Design 

4.1.  DESIGN CONTEXT 

4.1.1. Broader Context 

Our design is situated entirely within the avionics community. Although a multicore stress test tool 

is usable for other areas of engineering design, our hardware specific requirements and relevant 

engineering standards narrow down the design scope to avionics. The tool is currently being 

designed for Boeing, but as our product is being released as an open-source asset that 3rd party 

companies could use the tool to design safety critical systems. With the growing complexity of 

avionics platforms, it is imperative that multicore systems become reliable enough to help increase 

the efficiency of avionic hardware. 

Area Description Examples 

Public health, 
safety and 

welfare 

Our project affects several stakeholder 

groups including engineers and other 

employees of Boeing, as well as the 

general public that could use products 

incorporating components that were 

tested with our solution. 

Ideally our testing system 

contributes to safer software and 

more advanced performance 

mitigation techniques in the 

avionics space, along with a better 

understanding of execution times 

in the context of a multicore 

systems experiencing a high load. 

If such testing is not thorough 

enough, loss of property and life, 

as well as reputation could occur 

for our stakeholders. 

Global, cultural 
and social 

Our project focuses on the verification of 

multicore systems in safety-critical 

applications specifically avionics. A 

project’s effectiveness and safety are only 

as good as the culture of the workplace it 

is developed in. 

Usage of the MOAT solution 
could contribute to a positive 
change in safety culture in the 

workplace where it is being 
applied by providing a more 
accessible toolset for safety-

critical verification. 

Environmental 

Our project’s primary environmental 
impacts include energy consumption and 

resource usage (specifically rare earth 
metals). Because our tool is merely a 

software device, the main aera of concern 
is wasted energy usage. 

Realistically, the energy impact is 
rather low when comparing our 

tool to the broader avionics 
system. Nonetheless, the testing 

software will require some level of 
energy use to run, in turn 

affecting energy production 
factors surrounding the 

environment. 

Economic 

To get our testing tool up and running, 
certain hardware must be purchased. In 
addition to the specific board for testing, 
a serial to display adapter is required to 
properly run/debug the system. Upfront 

costs are trumped by the reduction in 

Although not expensive, buying 
the hardware to run Xen can be 

considered an economic 
consideration. The byproduct, 

however, is the better 
development of products from a 
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economic factors, such as safety 
hardware, systems re-design factors, etc. 

safety standpoint, which allows 
for the reduction of backup 

systems onboard. 
Figure 5: Areas of ethical concern 

4.1.2. Prior Work/Solutions 

Our work developing this project is motivated by our client’s research in multicore integrated 

modular avionics [2]. The overarching use case for our design is a tool suite that supports the work 

of engineers to ensure safety critical systems react to inputs within a deadline. The final deliverable 

of our project is a tool-suite that provides an engineering team with relevant data regarding a 

multicore system’s WCET [3]. Our design also bolsters the efficiency of the verification process in 

that it allows a system designer to partition a multicore system into discrete subcomponents and 

characterize the Worst-Case Execution Time (WCET) on a case-by-case basis. This reflects the 

verification process in our client's industry [1]. Ultimately, our efforts are directed towards 

implementing a framework as outlined by our client’s research [4]. 

There are several products on the market that are similar to our design. They range from 

professionally developed closed source tools to open-source academic projects. These tools provide 

us with a frame of reference in the market showing us how our tool suite can address specific 

needs. Each one of the designs, detailed along with their pros and cons, are shown in figure 6 

below. 

 

Multicore 
Operational 

Analysis Tool 
(MOAT) 

RapiDaemon 
Multicore 

Test Harness 

OTAWA 
(Open Tool 
for Adaptive 

WCET 
Analysis) 

MASTECS 

Pros 

Open source, 
built with 
modern 

hardware in 
mind. 

Designed by a 
team of 

professional 
engineers, 

specifically for 
compliance 

testing. 

Open source 
& has good 

instructions. 

Open source, 
supports 

several ISAs 
(e.g., ARM, 

RISC-V, etc.). 

Joint project 

offering timing 

analysis 

software, 

consulting, and 

documentation. 

Cons 

Less polished 
than competitors 

due to time 
restrictions. 

Closed source & 
expensive. 

Very old, not 
built for Xen, 
development 
stopped four 

years ago. 

No recent 
builds, not 

well-known. 

Received 
funding from 

EU, so potential 
issues with 

portability to 
North America. 

Figure 6: Analysis of market competition 

4.1.3. Technical Complexity 

Our project approach leverages and aggregates several core computer engineering and embedded 

systems concepts. One of our project’s challenges is choosing a hardware platform that 

accommodates the tools we require and meets our client’s architecture requirements. This requires 
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familiarity, if not relatively advanced knowledge, in several domains to adequately implement our 

design. 

Our project requires the interoperability of the following tools, components and subsystems: 

• How a computer’s memory hierarchy works 

o The design requires that we understand a modern computer’s memory hierarchy 

to generate as much traffic to the next level of storage as possible 

• Mechanics of multi-level caching in an ARM processor  

o Our team must gather detailed information for the cache structure of our chosen 

architecture 

o The research we do must allow us to maximize the number of cache misses 

• Understanding of our platform’s bus and I/O layout 

o A common source of interference in multicore systems comes from contention on 

shared communications pathways between cores 

o Our design must be aware of these pathways and exploit them to uncover 

interference channels 

• Knowledge of multicore processor systems 

o Our design must be able to demonstrate that an application running on one core 

can interfere with the proper execution of another application on a different core 

o This requires a deep understanding of how cores that make up a multicore system 

arbitrate resource sharing 

• Software development knowledge 

o Our final deliverable is a test suite that has a UNIX-like command line interface 

and various supporting Python libraries. This requires an adequate knowledge of 

software development tools and practices (e.g., version management, software 

libraries, etc.) 

o Addition knowledge is required for the writing of POSIX (Portable Operating 

System Interface) compliant software at the OS level to be distributed to a wider 

audience 

• FPGA (Field Programmable Gate Array) Development Boards 

o Interfacing with embedded systems 

• SBCs (Single Board Computers) 

o Requires knowledge of how to use resource-constrained computing environments 

o Evaluate the costs and benefits of several different boards 

o Requires the ability to efficiently read data sheets to find relevant information 

• How to configure and use a type-1 hypervisor 

o Using the hypervisor correctly depends on the team’s understanding of isolating 

computer system resources 

o Requires knowledge regarding the virtualization of computer hardware and 

subsystems 

o A type one hypervisor runs directly on computer hardware, so configuration 

knowledge is necessary 

• Profiling and analyzing application performance 

o Our team must know how to leverage and use existing performance tools  

o Our design also necessitates that we know how to install these tools on our 

platform 
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In addition to the preceding technical aspects, our design is also constrained by our client’s ISA 

(Instruction Set Architecture) requirements. The project description stipulates that the final 

version of our design must run on an ARM multicore processor. Ideally, our client would like us to 

choose a multicore processor that has around six cores. 

Due to its scope this project, once implemented, will exceed current industry solutions in that it 

provides an open-source alternative to existing Worst-Case Execution Timing software. The team 

must synthesize multiple domains of computer engineering, computer science and engineering 

economics to deliver the final form of our client’s request. 

4.2. DESIGN EXPLORATION 

4.2.1. Design Decisions 

Per our client Boeing’s guidance, we have been able to condense our project into 3 broad 

categories: Hardware Platform, Resource Contention Channels and Hypervisor. These three 

categories are elaborated upon below, allowing us to describe the decision-making process in 

detail, providing insight into our project's engineering plan. 

4.2.1.1. Hardware Platform 

The first major decision that was necessary for our team was the choice of a hardware platform for 

our framework to run on. Three stipulations were given to the team by Boeing. These stated that 

our hardware should utilize an SoC (system-on-chip) that contains at least two processor cores, 

that those cores implemented the ARMv8-A instruction set, as well as that the hardware should be 

in the format of a single-board computer (SBC). From there, the team identified several other 

constraints to guide our decision, including hardware availability, age, compatibility and feature 

set. To ensure that we could begin work on the project in an expedient manner, the platform we 

selected needed to be in stock with an estimated shipping time of no more than one to two weeks.  

Hardware age was another critical consideration that the team had to make, as the ARMv8-A 

instruction set was publicly released in 2011. As many improvements have been made to SoCs 

utilizing ARMv8-A technology since 2011, it was critical that the team found a platform released 

within the last 5-6 years, ensuring that our testing was relevant by considering hardware of a more 

modern design. The feature set of our hardware was also something that had to be accounted for. 

This includes things such as peripheral connectivity (USB, Ethernet, PCIe (Peripheral Component 

Interconnect Express)) and memory technology/capacity. These features would be critical for 

allowing us the most flexibility in exploiting resource contention channels as described in the 

following section.  

4.2.1.2. Interference Channels 

The primary motivation of our work concerns developing a tool set that will help our client in 

verifying multicore avionics systems for compliance with airworthiness regulations, as outlined in 

FAA Advisory Circular 20-193. Part of this verification process involves identifying and 

characterizing performance detriments resulting from simultaneous access of shared device 

resources. For example, memory, Level 2 processor cache and I/O (input/output) subsystems (via 

USB Ethernet, PCIe or USB). Using our platform feature set as a guide, as stated in section 4.2.1.1, 

the team had to make several decisions on which resources would be targeted, as well as how they 
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would be exploited (simulating a potential bad actor in real avionics system) to show we are 

achieving a true worst-case scenario. 

The first area of contention the team identified was the processor cache. The processor cache is 

responsible for storing data that has been accessed recently or frequently (depending on the data 

replacement algorithm used by the designer), and considerably boosts system performance by 

reducing the frequency of main memory accesses (which are much slower to perform than cache 

accesses). Among some other methods, the team chose an attack vector known as “cache 

thrashing”, which is a programming technique designed to maximize cache misses, meaning that 

data stored in the cache will frequently have to be ejected, and new data read from main memory. 

This creates a considerable amount of stress on the cache subsystem and could lead to performance 

degradation in other programs trying to utilize the cache.   

The second area of contention that the team identified was the memory subsystem. Any 

application running on the target platform will need to utilize memory to store information about 

the work that it is performing, and as such, is a prime area for resource conflict. While modern 

systems have sufficient protections in place to prevent programs from using too much memory 

capacity, far fewer protections are in place to prevent programs from using too much memory 

bandwidth. Bandwidth refers to the rate that information can flow between two given subsystems 

on a device. In this case, focus is on the CPU-to-DRAM data path, as the CPU often performs 

processing tasks on program data that is stored in main memory. If a program utilizes an excessive 

amount of memory bandwidth, the performance of other applications running on the system could 

experience unpredictable latency when accessing data. For this reason, it is critical that the effects 

of memory bandwidth contention are analyzed.  

The third area of contention that the team identified was the I/O (input/output) subsystem, which 

handles access to peripheral devices over a variety of protocols. Given that modern avionics’ 

applications require a vast amount of throughput, it is imperative that our testing suite analyses the 

operation of I/O when interference arises. Such interference concerns include bandwidth 

limitations, DMA (Direct Memory Access) stressing, resource contention overlapping, end-to-end 

latency and delay jitter. If a program overloads the available bandwidth, the performance of other 

important subsystems may take a hit, leading to eventual failure. 

4.2.1.3. Hypervisor 

When it comes to the choice for hypervisors, the team had only one choice: Xen. Our reason for 

using Xen is primarily informed by two main reasons: Xen is the only major Hypervisor to support 

the ARM Architecture, and Boeing specified that our team use Xen in our design. While 

alternatives like KVM (Kernel-based Virtual Machine) exist, Xen is better suited for use in the 

avionics industry. Within the Xen hypervisor, the team has elected to use an Ubuntu ramdisk and 

minimal root filesystem to avoid introducing additional overhead from an operating system that 

could skew test results. This will allow us to thoroughly test the worst-case execution time while 

running the interference generators. 

4.2.2. Ideation 

Per Boeing’s request, we are using an ARM SoC and Xen Hypervisor. Boeing’s suggestion stems 

from this platform’s use in safety-critical avionics systems. This enables our design to closely mirror 
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what is used in industry.  There are many different options when it comes to ARM SoCs, so our 

team had to select one that meets the requirements of Xen and has multiple cores. 

4.2.2.1. Raspberry Pi 

The Raspberry Pi is a very popular ARM Multicore SBC with lots of community support. This led 

our team to consider this board first. We quickly were able to find others who had gotten Xen 

running on Raspberry Pi’s, but the documents and code repositories were a few years old. Our team 

had a Raspberry Pi already, so we decided to start with this board. Early in development we found 

that the bootloader used by the Raspberry Pi board is a very proprietary and closed source. This 

was a major roadblock for our system as it prevented us from getting Xen working. This led us to 

move away from the Raspberry Pi and pursue other options. 

4.2.2.2. RockPro64 

The RockPro64 is a popular alternative to the Raspberry Pi and is made by a group known as 

Pine64. This board meets the ARM requirements of our design and is readily available. In searching 

for Xen documentation, we found a few references to Xen support in documentation and others 

getting Xen working on the platform. This platform meets the ARM SBC requirements of our 

project and has easily accessible and open-source documentation so that we can thoroughly test 

the platform. This board showed promise for running Xen, but ultimately had issues with the 

provided tools to get Xen running. 

4.2.2.3. Avnet ZUB-1CG 

The Avnet ZUB-1CG is an affordable Xilinx Ultrascale+ MPSoC based development board. Our team 

started to look at this board as a hardware platform as Xilinx is a major contributor to the Xen 

Hypervisor project and therefore many of their devices support Xen. Our team found lots of 

documentation about Xen on Ultrascale+ MPSoCs, including how to build Xen on PetaLinux, 

Xilinx’s embedded Linux platform, and how to configure Xen DomU’s. While working on getting 

PetaLinux built with Xen for this board, our team discovered that the ZUB-1CG is not an officially 

supported version of the Ultrascale+ MPSoC for Xen. This led us to move away from this specific 

version of the Ultrascale+ MPSoC platform for something with a bit more support and power. 

4.2.2.4. Hikey 960 

When looking for ARM SBCs that supported Xen, our team found the Hikey 960 which Xen had 

listed as a supported platform. As we started looking into this platform further it appeared that it 

met our requirements. The issue was that this board was very old and no longer being produced so 

the team was unable to source one. This caused the team to quickly move away from this platform. 

4.2.2.5. Xilinx ZCU106 

The ZCU106 Evaluation Kit is a development board based around the XCZU7EV Ultrascale+ 

MPSoC. This board, as with the Avnet ZUB-1CG, has lots of documentation from Xilinx about how 

to build Xen for the Ultrascale+ MPSoC platform. This board is also referenced in the PetaLinux 

build software that supports Xen. After researching and working with the boards listed above, and 

due to the existence of the PetaLinux framework and extensive availability of documentation, we 

landed on this platform as our final candidate. 
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4.2.3. Decision-Making and Trade-Off 

When determining the hardware platform our team was going to use, we looked across the internet 

on sites such as the Xen wiki to consolidate a list of possible solutions. This netted us the pros & 

cons list included below in Figure 7. To help gauge what our client desired, we presented our 

findings to Boeing during our weekly team-client meetings. Over the course of the weeks following, 

along with testing and hardware bring up, we were able to check boards off the list until we ended 

with our current board of choice, the ZCU106. As most of the boards on the list complete our task, 

there are small differences such as the delivery time, document availability and most importantly, 

the repo access that guided our final decision.   

As noted below, when working with the Pi, we quickly found that the bootloader was closed source 

and complex to work with. Although the large amount of community support is a good component 

when considering the longevity of a product, the amount of work required early on deterred us 

from this option. After moving away from the Pi, the team discussed with ETG the possibility of 

purchasing a board from a 3rd party non-name brand store. Due to policies in place, the team was 

forced to scrap this board due to limitations in availability from reputable locations. This led the 

team to proceed with purchasing the RockPro64. Although not our first choice, tests and client 

guidance directed us in this direction. After putting in a considerable amount of time with this 

board, we came very close to getting a functional installation of Xen. However, around this time we 

also began researching and working with the Xilinx ZCU106. The availability of documentation and 

compatible build tools led us to shift our focus solely to working with this board. 
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4.3. FINAL DESIGN 

4.3.1. Overview 

The system design utilizes a Xilinx ZCU106 FPGA Development Board. A critical part of our design 

is a software component known as a hypervisor, which allows for fine-grained control over the 

Figure 7: Decision matrix for hardware selection. 
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hardware resources that applications use on the system. Coupled with a base test, and programs 

designed to stress (in other words, use computing resources) the system in very specific ways, this 

fine-grained control is essential in ensuring precision in our comparative performance 

measurements. The purpose of taking comparative performance measurements is to show that a 

given type of stress cannot reduce the system's performance beyond a certain point. Sections 4.3.2 

and 4.3.3 and the figures contained therein describe the components and how they operate in a 

more technical capacity. 

4.3.2. Detailed Design and Visual(s) 

 

Figure 8 presents the schematic of our system. It consists of several components, including the 

hardware contained in the SoC, the Linux kernel which hosts various kernel modules, Xen and its 

associated domains and the various actions that will be performed by the domains running under 

Xen. 

Figure 8: Block diagram of the system, including hardware and software components and how they are connected. 
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Figure 9: Components and interference channels on XCZU7EV MPSoC and associated hardware  

 

 

Figure 9 presents the potential interference channels that exist on the processing subsystem of our 

hardware. The process of stressing the cache occurs through the CPU to cache data path, which can 

be seen in orange above. Each processor core incorporates its own level 1 cache for instructions and 

data, however, all four cores share a cache arbitration controller and a single level 2 cache. Since 

caching data significantly increases application performance, the DomU environment running this 

stressor will be executing a program that is very cache-unoptimized, meaning that L2 cache misses 

are frequently occurring. This would replace the data that is present in cache for other programs 

running on other cores, and in theory, this should affect their performance as the data they had 

cached is no longer available.  

The memory stress environment will follow a similar approach to cache stress. Since cache misses 

necessitate access to main memory, abusing this property can generate a very large amount of 

traffic to main memory banks, thereby stressing the available memory bandwidth for all programs 

on the system. Lastly, the I/O subsystem stress occurs via a system bus that is present on the CPU 

subsystem and facilitates communication with other controller modules present on the SoC. 

Multiple programs may be communicating information over a local or wide area network or via 

other USB peripherals, so generating a large amount of I/O traffic from a DomU on one core will 

stress the Quality-of-Service behavior (the manner in which I/O traffic is prioritized for 

transmission) of the shared Ethernet and USB controllers that manage accesses from all 

components on the SoC. 

4.3.3. Functionality 

We will begin with Xen - Xen is an open-source hypervisor that creates and manages VMs that run 

a variety of guest OSs. Xen guests may also be of the bare-metal variety, in which a program is 

compiled into assembly language and run directly on hardware without an operating system. As 

defined in our list of terms, Xen runs directly on hardware, making it a type-1 hypervisor. This is 

beneficial to us because it not only reduces resource overhead, but also affords us increased 

granularity when it comes to allocating resources to the various domains we will create and manage 
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under it. Xen has two types of domains (virtual machines) that the user can create: DomO and 

DomU. DomO is the manager domain in which configuration of the main hardware and various 

DomU environments (guest domains/virtual machines) takes place, and this configuration is 

performed via hypercalls, which go up through the kernel to the hypervisor running on hardware. 

Once a guest VM (DomU) is configured, it can be set up to run another operating system (such as 

Linux), or to run a bare-metal program. A bare-metal program is a program that has been compiled 

down from high-level source code (like C) to the assembly code corresponding to the platform it 

will be running on. The advantage of this method is that no resource overhead will be consumed by 

an operating system running on that guest domain, as the program is being executed directly on 

hardware. However, it is significantly more complex to implement, so in order to expedite product 

bringup, our team has elected to utilize a lightweight Linux installation to host the contention 

generators in DomUs. 

The user-facing portion of the tool set is responsible for parsing test configurations and setting 

relevant parameters. It communicates with the development board, and by extension, DomO, over 

a serial connection, where it manages the complete test flow. It instructs DomO to boot certain 

DomUs and start a given type of resource contention generator on it, after which the victim 

program is started in DomO. The configuration file also specifies the number of times the victim 

program should execute, which allows us to observe run-to-run inconsistencies and any other 

statistical trends that may arise. After the test loops have completed, the DomUs are shut down, 

and the next test in the list is prepared. After all tests have completed, the front end analyzes the 

collected information to extract key metrics, including WCET, average execution time, and 

standard deviation, and also plots the run times of each test loop. 

Xen DomO is responsible for several essential tasks. The first is managing guest domains that host 

the resource contention generators. The guest domains are not statically assigned any information 

other than the amount of DRAM and CPU core(s) that is/are reserved for it. As mentioned above, 

the front-end interface communicates with DomO to issue commands telling it to boot DomUs 

assigned to the cores that have been selected for a given test, which happens through the Xen 

Management Toolchain (“xl”). DomO must also store test results in a consistent format that can 

easily be parsed for execution time data that will be analyzed later. The ability to analyze this 

information for our base program is essential to determine that one, our interference generators are 

generating resource interference, and two, how much of a detriment to performance is observed to 

the base test when resource contention is enabled.  

Xen DomU environments are less complex than DomO since they are purely responsible for 

executing a program (or programs) designed to stress a certain part of the system. In our case, we 

are interested in targeting the shared (L2) CPU cache subsystem, the data path between the CPU 

cores and main memory, and the data path from the CPU cores to the I/O subsystem on the Xilinx 

XCZU7EV MPSoC. These subsystems were chosen because they are shared between processor 

cores, meaning that programs on independent cores could still affect each other by misusing 

(stressing) the various subsystems (refer to Figure 9 for visualization). 

4.3.4. Areas of Challenge 

Our client’s requirements led us to a narrow range of choices for hardware, but despite this one of 

the greatest challenges was getting every tool we needed to implement our design to work on our 

hardware platform. Getting the Xen hypervisor installed on one of the platforms we identified took 
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most of the first semester and was a major impediment to both our team’s ability to satisfy 

requirements and make technical progress. 

We overcame this challenge by dividing the team’s efforts between two hardware platforms in the 

early stages of our project. We researched and implemented the initial stages of our design 

concurrently on two different platforms: the Xilinx ZCU106 and the Pine RockPro64. Our client was 

also able to provide guidance in configuring the software and hardware components we needed for 

our design. Eventually, it became evident that the ZCU106 was much more conducive to our design 

and at our client’s request we focused our efforts on this platform. 

With the groundwork established for our design, our team started to encounter obstacles related to 

our user’s needs. For example, one of the early iterations of our design induced stressors on our 

platform and collected relevant timing information. This prototype required the user to manually 

type in the commands to produce the desired output. During a presentation of this prototype to 

our client, one of our users pointed out a strong use case for running stressors automatically via a 

configuration file. User feedback required our team to react quickly to user needs as they came up. 

We overcame this issue by taking a modular design approach for the front-end that had the 

flexibility to accommodate users’ desires on the fly. 

4.4. TECHNOLOGY CONSIDERATIONS 

The following section details the technologies that our design uses. Each technology is concerned 

from the standpoint of its strengths and weaknesses, as well as viable alternatives when applicable. 

4.4.1. Hardware Platform  

We initially chose the RockPro64, which is a Single Board Computer (SBC) that closely aligns with 

what our client requested in terms of a hardware platform. It uses the ARM instruction set and has 

a multi-core heterogeneous processor. This architecture allows our team to partition the system 

resources such that a victim application running on one core can have its performance degraded by 

a stressor running on another core. While we were able to find abundant hardware documentation 

for the platform online between the official manufacturer and an online wiki, implementing our 

design on this platform proved challenging. The existing documentation provided us with a 

detailed description of the boards microarchitecture but finding information related to installing 

the Xen hypervisor on this platform was scarce to non-existent. 

Relative to other SBCs that we considered, like the Raspberry Pi 4 or HiKey 960, the RockPro64 was 

the most well-documented which motivated our decision to pursue it initially. One aspect we 

considered in our initial analysis was that Xen may be easier or better suited to running on an 

FPGA like the Xilinx ZCU board, which we ultimately found to be true. We speculate that many 

embedded applications that use Xen run on an FPGA board rather than a commodity SBC like the 

RockPro. 

4.4.2. Xen Hypervisor  

Xen is an open-source type I hypervisor with abundant documentation. Additionally, our client has 

several engineers with experience using Xen for different applications. This allows us to create 

virtual machines on our hardware platform to properly isolate the system’s hardware resources to 

properly characterize interference channels.  
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The challenge of using this technology lies in its learning curve. Xen is widely used in industry, but 

it is commonly running on hardware different than what our team is using. This has meant that we 

have spent more time than we had originally expected troubleshooting Xen issues when it was 

originally meant to simply be a supporting technology to our overall design. The alternative to 

using Xen is that our project can in some capacity be emulated in a Linux environment.  

4.4.3. Stress-NG 

Stress-NG is a software library used to stress the various subsystems of a computer. The primary 

advantage that this technology lends to our project is that it implements many stress base cases. 

This is useful for our project in that it allows us to uncover previously unidentified interference 

channels on our hardware platform, which is the fundamental goal of our design. Stress-NG is 

ultimately an accelerator for our work; it allows us to get to the most important parts of our design 

sooner. Without it, we would need to write custom stressors for each base case.  

Stress-NG's weaknesses lie in that it is a general library intended for use in various systems. If there 

is a specific aspect of our platform we wish to exploit, we may need to write custom software to 

accomplish the behavior we want. This can prove to be a time-consuming process given how 

closely our software is integrated with the hardware. There are not many alternatives to Stress-NG, 

so writing our own stressors in C and assembly are likely not a viable option. This could be an area 

that is open for future work, given an individual that would like to contribute to the open-source 

software. 
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5. Testing 

Our testing philosophy is centered around isolating systems and performing unit tests to ensure 

that they fit into our larger design. Due to the multiple layers of hardware and software to 

successfully implement our project, most of our tests are focused on ensuring that the system has 

the same functionality after a unit is integrated as it did before. This allows us to build on a solid 

base. 

Naturally, most of our testing is regression testing. The scripts we have stored in our GitLab 

repository allow us to iterate quickly on our design and recover to a working state if a regression 

test fails. This aids not only the reproducibility of our work but also its dissemination to a wider 

audience. 

The primary challenge of testing our project also stems from the scope of testing that must be 
performed. Our design requires us to perform testing at the hardware, software, and user levels. To 
test the project at all these levels, the team tests each platform together whenever possible. This 
allows for streamlined integration testing and making sure that changes  

5.1. UNIT TESTING 

To test the platform, the team utilized real world hardware to verify that the system functioned. 

The team was able to test each software component added in PetaLinux after the build was 

completed on a ZCU106. Each unit of the interface software was tested continuously by performing 

basic tests on a development machine, as well as testing the connection with the actual hardware. 

Much of the team’s testing was performed on the whole system in order to avoid integration bugs. 

5.2. INTERFACE TESTING 

When testing the control interface, the team first tested locally on computers to make sure that we 

had basic functionality and were able to do things such as read and write over serial ports. As the 

interface became more complex, the team used the ZCU106 to make sure that all the interface 

connections were working. This allowed for fast revisions to be made to the interface to maintain 

and improve functionality. 

5.3. INTEGRATION, SYSTEM, AND REGRESSION TESTING 

The team focused on continuously integrating the components of the project as they were being 

developed. This allowed for the whole system to be tested after each change to any of the 

components. The whole system was tested on a consistent basis in order to collect data for analysis 

which allowed the team to find and correct bugs quickly and efficiently. Another benefit of this 

testing strategy was it allowed the team to make sure new features didn’t affect old functionality. 

Using the system to collect the required data required all the old features to be operational, which 

shows that the system did not regress. 

5.4. ACCEPTANCE AND USER TESTING 

Acceptance testing was handled by presenting the program’s output at different stages to our 

client for their approval. The team was able to add and test features between these meetings, then 
present the new outputs and data to the client for direct approval. This made sure that the team’s 
project met the requirements and performed the way that the client was expecting.  
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5.5. RESULTS 

The results of the team’s testing were positive. The system generates interference, and the software 
can collect data and categorize the interference. The testing strategies that were used resulted in 
quick and efficient identification of issues which allowed the team to address them rapidly. The 
constant communication with the client resulted in a focus on what was important during testing 
and led to a better product with useful features.  
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6. Implementation 

Our team’s implementation largely matched our final design in terms of core functionality, with a 

few changes to certain areas due to time constraints. We will break the implementation process 

down into several sections, including hardware and hypervisor bring up, resource contention 

generator setup, and front-end interface development.  

6.1. HARDWARE AND HYPERVISOR BRINGUP 

Our team utilized the PetaLinux framework, a Linux distribution that includes build tools and 

options specific to Xilinx ZCU development boards, to get Xen running on our hardware. While 

most of the configuration was left as default, there were a few important things that had to be 

modified to accommodate the inclusion of Xen, including several package groups and hardware 

device tree entries. We also needed to include Stress-NG in our PetaLinux build, since we had 

decided to use some of its functionality to serve as our victim program on which we would take 

execution time measurements. Since PetaLinux is essentially an interface for a Xilinx-customized 

version of Yocto, a popular tool for building embedded Linux images, adding a custom BitBake 

layer that built and packaged Stress-NG was straightforward. After allowing the complete 

PetaLinux image to build, the team had to configure some ancillary files for the embedded 

bootloader that inform the hardware where various system images are located during bootup. This 

was achieved by using a tool from the Xen Project called ImageBuilder which generated a 

bootloader configuration file based on the parameters and image sizes of our files that were built 

with PetaLinux. The end result was a disk image that could be flashed onto an SD card and booted 

on our target hardware. The team thoroughly documented this process in the event that changes to 

the PetaLinux image were necessary, which turned out to be a very helpful decision. 

6.2. RESOURCE CONTENTION GENERATOR SETUP 

The team ideated through several approaches to generating interference on our system. Eventually, 

we landed on using Stress-NG due to its wide variety of stress test options. Because of this, the 

team also pivoted away from the idea of running interference generators as bare-metal applications 

and on to running a lightweight Ubuntu environment in the DomUs. To run guest OSes in the 

DomUs, a decompressed Linux kernel image, a ramdisk (used to provide limited drivers during 

system boot), and a root filesystem (for permanent data storage) are required. To achieve this 

transition, the team downloaded an ARM-compatible version of Ubuntu and extracted the kernel 

image and ramdisk from it. We then downloaded an Ubuntu Base root filesystem, an extremely 

lightweight disk image intended for virtualization uses. We then used a tool called virt-customize, 

which allowed us to install packages (such as Stress-NG) on to the root filesystem image without 

having the guest system booted. This was essential because the guest systems do not contain a 

package manager and do not have a network connection, which would make it impossible to install 

packages with the system up. In our final design, there exists three separate DomU environments, 

one for each of the remaining CPU cores outside of DomO. 

6.3. FRONT-END INTERFACE IMPLEMENTATION 

The final component of the design involved creating a method of interfacing the user with the 

hardware that we had brought up, as well as analyzing the test data that we collected. To achieve 

this, the team elected to utilize the on-board serial connection of the ZCU106. Data is transmitted 
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over the serial connection via a custom Python framework that presents the user with several 

options. These options include: 

• Terminal mode (allows the user to directly issue commands to the board, useful for 

troubleshooting) 

• Batch test from configuration file 

• Single test from command-line input 

Terminal mode is straightforward and allows direct issuance of any command that the user wishes 

to execute in the DomO environment. This mode proved to be useful when debugging initial 

versions of the design. Batch testing mode allows the user to specify multiple sets of test 

parameters, such as interference types and associated cores to run them on, victim program details, 

and test name, in a YAML file. This YAML file is parsed by the interface, and the tests are then run 

on the board with no user interaction required. This feature was very useful when collecting test 

results, as it allowed us to have tests running in the background while working on other aspects of 

the system. The user may also choose to run a single test, manually specifying interference types, 

cores, and the victim program in the command line. The inclusion of these options makes the 

frontend a flexible and valuable component of our overall system design. 

The final component of the frontend consists of results parsing and analysis. As the team elected to 

use Stress-NG in DomO as our victim program, we were able to leverage its support for outputting 

results in a YAML format, which allowed us to use Python to easily parse and analyze the large 

amount of data generated by various test runs.  

6.4. DESIGN ANALYSIS  

The implementation of the team’s design works well. The system has features to make automated 
testing much easier, as well as providing a prebuilt platform for the hardware. This is demonstrated 
by the interference results that have been collected over the course of the project, as well as the 
client’s approval of the system’s results. Overall, the system’s design is efficient and functional 
while still being feature rich. 

Something that needs to be improved is the process for parsing the collected data. In the current 
form, this requires the user to shut down the board, pull the logged files off of the memory card 
manually, and then run a separate parsing program on the results. Ultimately this should be 
integrated as a function of the main control program. One of the reasons this limitation exists is 
due to the serial connection between the host and target, and the software libraries used to 
establish that connection. 

Additionally, the team did not have sufficient time to implement resource contention mitigations, 
as prior milestones in our design process consumed more time than initially anticipated. This area 
could be a great focus for future project efforts. 
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7. Professional Responsibility 

7.1. AREAS OF RESPONSIBILITY 

Area of 
Responsibility 

IEEE Code of Ethics NSPE Code of Ethics 

Work Competence Ensure that the team has the ability and 
knowledge to complete every project 
completely and safely. 

Engineers shall undertake 
assignments only when 
qualified. 

Financial 
Responsibility 

Provide clients and users with accurate and 
realistic estimates for the costs associated with 
the projects. 

Act as good agents on a 
client’s behalf. 

Communication 
Honesty 

Provide honesty in all aspects of feedback, 
criticism, and design abilities. 

Avoid deceptive acts & make 
statements in a truthful 
manner. 

Health, Safety, Well- 
Being 

The health, safety, and well-being of the users 

and public is the number one priority. 

Hold paramount the 
safety, health, and 
welfare of the 
public. 

Property Ownership Treat others and their property fairly and with 
respect. 

Act as good agents on a 
client’s behalf. 

Sustainability Strive to implement positive sustainability 
practices to better the lives of users and 
surrounding communities. 

Adhere to the principles of 
sustainable & development 
in order to protect the 
environment for future 
generations. 

Social Responsibility Act as responsible members of society and 
strive to better one’s surroundings. 

Honorably conduct 
themselves as to enhance 
the reputation of the 
profession. 

Figure 10: IEEE and NSPE Code of Ethics Aeras of Responsibility 

Comparing IEEE’s code of ethics to NSPE (National Society of Professional Engineers) we can see a 

lot of the same values; prioritize safety and health while avoiding un-honorable acts, etc. At face 

value IEEE can be described as a worldwide association of electronic and electrical engineers, which 

differs from NSPE which encompasses primarily U.S. based engineers. 

7.2. PROJECT SPECIFIC PROFESSIONAL RESPONSIBILITY AREAS 

• Work Competence – This Area of Responsibility is extremely important for our project as 
we are dealing with safety-critical systems. If our system performs incorrect analysis on 
multicore embedded systems, it could lead to failures in airplanes mid-flight and potential 
loss of life and property. – Performance (High)  

• Financial Responsibility – Our project has a low cost as it is primarily software based and is 

portable across the ARM architecture. – Performance (Low)  

• Communication Honesty – This area applies to our project as we are completing work for 
our client, Boeing. It is very important that we keep communication open and keep our 
client informed about our progress, any challenges encountered, and any issues with our 
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work. In a broader context, the results of our work could inform the safety decisions across 
the avionics industry. This means that our team has a strong professional and ethical 
responsibility to communicate clearly, unambiguously, and with absolute transparency. – 
Performance (High)  

• Health, Safety, Well-Being – The project does not directly affect people or have many 
health risks. As stated earlier, however, if our project is not built well, it could lead to 
failing avionics mid-flight. – Performance (N/A)  

• Property Ownership – Our project is Open Source and will ultimately be available for 
anyone to use. This leads to Property Ownership not being something that affects our 
project. – Performance (N/A)  

• Sustainability – This Area of Responsibility is also a low priority for our project as it has 
very little direct environmental impact. Our software also runs on hardware that consumes 
very little power. – Performance (N/A)  

• Social Responsibility – The Social Responsibility of our project is to improve the efficiency 
of Avionics systems while maintaining the highest levels of safety. – Performance 
(Medium)  

7.3. MOST APPLICABLE PROFESSIONAL RESPONSIBILITY AREA 

For our Multicore Analysis Tooling project, Work Competence is the most important Area of 

Responsibility. If the team does not complete the project competently, there could be serious 

consequences, such as airplane crashes due to the failure of avionics systems. For this reason, the 

team has spent lots of time researching methods to validate WCET and use industry contacts to 

verify the correctness of our system. 
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8. Conclusions 

8.1. SUMMARY OF PROGRESS 

Our team produced a test framework that characterizes the multicore interference of test programs 

in the presence of competing processes. We translated our client’s hardware platform requirements 

into a hardware / software system that allows a user to test a base program against multiple sources 

of interference. Our team also produced software on top of this system that characterizes multicore 

interference in terms of its worst-case execution time. 

In addition to satisfying the functional requirements of our client, we were also able to 

accommodate our users’ needs by making our design configurable. Specifically, our design allows a 

user to run specific tests in addition to automated scripts. Our team also documented each phase of 

our design process, aiding both the extensibility and reproducibility of our design. 

8.2. VALUE PROVIDED 

The system developed by the team provides a convenient and useful way to categorize multicore 

interference on safety critical systems. This system meets the user needs for functionality and 

creates an easy test harness for them to use during designs of other systems. This system 

successfully shows the worst-case interference of shared resources. This design can not only be 

applicable to the aerospace industry, but also any other safety critical systems that utilize multicore 

systems. The flexibility of the design could allow for it to be used in many industries, and on many 

products. The team has seen evidence of the product’s value in several conversations with our 

client, in which we discussed ways that our product can be integrated with their design flow, and 

design considerations that the team should take as we wrap up implementation.  

8.3. NEXT STEPS 

As our work on this project is ending, we have taken the necessary steps to ensure that our project 

can be handed off successfully. In our case this means getting permission from both Iowa State 

University and our client Boeing to open-source our work. Handing our work off to the open-

source community allows our project to continue to grow and evolve beyond our input.  

Specifically, we would like to see our design offer a more comprehensive suite of interference 

channels. This could include combinations of existing interference channels or aspects of our 

platform that we did not consider. Another useful aspect for future development would be the 

implementation of interference mitigations, which we were unable to experiment with due to time 

constraints, as we previously described. 

Our design could also continue to develop in terms of its accessibility and ease of use. Currently, 

users interact with the design strictly via a command line interface. Future development could add 

a simple GUI to add a visual method of interacting with the tool. Lastly, the tool could support 

automation by running preconfigured stress tests or accepting scripts that a user has written 

themselves. 
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10.  Appendices 

APPENDIX 1 – OPERATION MANUAL 

This appendix provides instructions on configuring and using the stress generation environment 

and tool suite. This guide assumes that the user has a functional PetaLinux installation on their test 

hardware. Instructions for building and installing PetaLinux can be found in Appendix 2. 

Configuring DomU Environments 

While the user can theoretically use any version of Linux for their DomU environments, we have 

pre-configured a minimal Ubuntu 22.04 system that the stress generators will run in. These files 

can be found under the ZCU106/DomU/Ubuntu folder in the code repository. This folder contains 

several important files: 

• Vmlinux-5.15.0-119-generic 

o This is the Linux kernel that the DomU environments will load. 

• Ubuntu-base-rootfs-stressng.tar.gz 

o This is the compressed filesystem image. It provides persistent storage and the 

necessary tools for the DomUs to induce resource contention on the system. 

• initrd.img-5.15.0-119-generic 

o This is the ramdisk that the system will utilize on bootup. It provides a minimal set 

of drivers that the system needs to boot and fully function. 

• Ubuntu-base-stressng.cfg 

o This is the DomU configuration file. It specifies the amount of CPU cores and 

memory the DomU may utilize, and what disk image it should load. 

After locating these files, the user will need to move them to an appropriate directory on the SD 

card containing the PetaLinux installation. The framework expects these files to be located at [root 

partition]/ubuntu on the SD card. When the SD card is mounted to a device that is NOT the ZCU 

board, the The user should then decompress the root filesystem image to that folder using a tool 

like gzip. Once the image has been untarred, the user will need to create two more copies of the 

https://doi.org/10.4271/2020-01-0016
https://ieeexplore.ieee.org/document/9594404
https://arxiv.org/abs/2101.02204
https://ieeexplore.ieee.org/document/8569651


 41 

DomU configuration files and root filesystem images, as one copy is necessary per core that is used 

to generate interference. It is not necessary to copy the ramdisk and kernel images, as those items 

are read-only and not specific to a given core. The configuration files should be renamed to 

core1.cfg, core2.cfg, and core3.cfg, or up to however many cores the user’s target system has. The 

untarred root filesystem images should also be renamed according to this scheme. Each 

configuration file will also need to have two parameters modified to point to the correct disk image 

and assigned its corresponding CPU core. This should be done as follows: 

• core[x].cfg 

o disk=['/run/media/root-mmcblk0p2/ubuntu/core[x].img,raw,xvda[x],rw'] 

o cpus=[x] 

o Replace [x] with the number of the core you are configuring 

Once this configuration has been completed, the user can move on to setting up the test 

framework with their desired contention generation types and baseline programs. 

Using the Test Framework 

The test framework is provided in the form of a Python file. The device that the user is hosting the 

test framework on should be a separate device from the test board and should be running Linux 

and a version of Python >= 3.10. The user should first proceed by attaching the serial connection 

from the test board to their host device. The framework assumes that the serial connection from 

the host device to the test board is enumerated as ttyUSB0 on the host system. The user should 

verify this before proceeding and change the device name in the main() function if necessary.  

When the user first runs the framework, they are presented with three choices: Terminal mode, 

MOATerm mode, and batch mode. Each of these options has a specific purpose. Terminal mode 

serves as a pure serial console and allows the user to directly issue commands and read responses 

from DomO. This mode is useful when debugging issues on the board. MOATerm mode is the first 

of two test modes that the framework supports. MOATerm allows the user to manually specify test 

parameters over one test run only. The user may specify the following test parameters: 

• Friendly Test Name (used for results directory naming) 

• Number of CPU cores to run interference generation on 

• Type of interference to be run on a given CPU core 

• Victim program that will be analyzed for execution time metrics 

o Must be in the form of a valid Stress-NG command 

• Number of times to loop the victim program 

Once the user has specified those parameters within the terminal window, the tool takes control, 

booting the appropriate DomUs associated with the cores chosen, starting the interference 

generation, and running the victim program. Once the victim program has run the specified 

number of times, the tool returns and the test is complete. 

The final test option, batch mode, allows the user to write the above parameters into a YAML file 

and execute multiple tests sequentially. This mode is useful for running many different 

combinations of base programs to generate a large number of test results with minimal user 

interaction. Details on the exact formatting of the YAML file can be found in the code repository. 



 42 

Analyzing Test Results 

Once the user has completed their desired number of test runs using one of the two available 

modes, it is necessary to perform statistical analysis on the resultant metrics in order to generate 

some insights. This is achieved with a separate Python file, named yaml_parser.py. In order to use 

this file, the user needs the matplotlib and yaml Python packages installed on their host system. 

The user should first remove the SD card from their test board and attach it to their host machine. 

Test results are stored in the directory [root partition]/[friendly test name] on the SD card. 

Given the way the YAML parser works, data analysis can only be done for one group of runs at a 

time, for instance [base run, 1 core interference, 2 core interference, etc.]. The user should edit the 

data_dirs array to point to each of the directories that contains results to a corresponding group of 

runs. Once data_dirs has been updated, the user should run the program, which will aggregate all 

the data collected from the base program in each of the directories specified, and provide the 

average, worst-case, and standard deviation of the execution time from the data in each directory. 

It will also plot the execution times for each run in the dataset for visualization purposes. An 

example of such functionality is shown below. 

 

 

Figure 11 (top): Execution time of a test over 50 runs, exhibiting a large amount of architectural interference. 

Figure 12 (bottom): Execution time of a test over 50 runs, demonstrating a small amount of architectural interference. 
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Figure 13: A histogram generated by the results analyzer. It shows the distribution of execution times over a victim program 

subjected to varying amounts of interference. 

APPENDIX 2 – BUILDING A PETALINUX IMAGE 

The code repository linked in appendix 5 contains a pre-built version of PetaLinux that the user 

may choose to use if it meets their needs. However, if the user wishes to make any additional 

modifications, such as adding additional packages or configuration options, instructions to do so 

can be found under the ZCU106 folder of the GitLab repository. 

APPENDIX 3 – ALTERNATIVE/INITIAL VERSION OF DESIGN 

As previously mentioned in this document, the team initially put a good amount of work into 

trying to work with the RockPro64 for this project. As such, the team had centered most of the 

design document from semester 1 around its architecture. The team had also developed several 

scripts that were intended to automate the build process under the assumption that we were able 

to get Xen working on that hardware. Late in the semester, unfortunately, the team discovered that 

the RockPro64 was ultimately unsuitable for our project due presence of alternative hardware with 

better documentation and due to the challenges, we’d experienced trying to get the hardware up 

and running. While much of our conceptual research we’d done on ARM-based processing systems 

still applied to our new hardware, all the work we’d done on documenting and automating the 

image build process for the RockPro64 was essentially scrapped as it was no longer relevant. 

APPENDIX 4 – OTHER CONSIDERATIONS 

• Building and configuring embedded Linux software is often “like putting Windows on an 

iPhone” – Steve VanderLeest, our advisor. 

APPENDIX 5 – CODE 

• The code is open-source on GitHub as per our client’s request. 

https://github.com/2Manchu/MOAT
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APPENDIX 6 - TEAM 

Team Members 

• Alex Bashara – Embedded and Cache Engineer 

• Joseph Dicklin – I/O Engineer 

• Hankel Haldin – Platform Bring up Engineer 

• Anthony Manschula – Project Coordinator and Memory Engineer 

Required Skill Sets for Your Project 
This project requires familiarity with computer architecture and an understanding of how code 

runs at a low level and knowledge of real-time embedded systems. 

Skill Sets Covered by the Team 

• Alex Bashara – Real Time Embedded Systems 

• Joseph Dicklin – Low Level Electrical Systems 

• Hankel Haldin – Low Level System Programming 

• Anthony Manschula – Computer Architecture Knowledge 

Project Management Style Adopted by the Team 
The team adopted an agile project management style, focusing on weekly meetings with the team 

and advisors to checkpoint progress and set goals for the following week. Issues have been tracked 

in Gitlab with weekly updates during our advisor meetings. 

Individual Project Management Roles 

• Alex Bashara – Cache Interference Lead 

• Joseph Dicklin – I/O Interference Lead 

• Hankel Haldin – Hypervisor Lead 

• Anthony Manschula – Memory Interference Lead 

Team Contract 

Team Name: MOAT 

Team Members: 

1) Alexander Bashara                                  2) Anthony Manschula 

3) Hankel Haldin                                          4) Joseph Dicklin 

Team Procedures 

1. Day, time, and location (face-to-face or virtual) for regular team meetings: Sundays 

at 12pm in person (Subject to Change).   

2. Preferred method of communication updates, reminders, issues, and scheduling 

(e.g., e-mail, phone, app, face-to-face): Discord, GitLab Boards (issue tracking, 

management), Trello  

3. Decision-making policy (e.g., consensus, majority vote): Consensus.  
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4. Procedures for record keeping (i.e., who will keep meeting minutes, how will 

minutes be shared/archived): Will take meeting notes and minutes in the shared 

OneNote notebook. 

Participation Expectations 

1. Expected individual attendance, punctuality, and participation at all team 

meetings: Attendance to all class sessions, timely attendance to out of class meetings 

(what the team deems needed per week), participation in Boeing meetings (ideas, 

questions, etc...), as well as other/misc. requirements discussed within the team.  

2. Expected level of responsibility for fulfilling team assignments, timelines, and 

deadlines: Be responsible and proactive about meeting deadlines and be sure to 

communicate in a timely manner if you do not believe you will be able to meet a deadline. 

Team members should be able to problem solve on their own but not be afraid to ask a 

question if they cannot find an answer.  

3. Expected level of communication with other team members:  

Respond to Discord messages within a day’s time.  

Group members should provide notice if they are not able to attend a meeting. If a group 

member is stuck or otherwise having difficulty completing work, they should inform the 

group so continued progress can be made on the project.  

4. Expected level of commitment to team decisions and tasks: If a group member takes 

responsibility for a task, he should be committed to completing it by assigning a deadline 

to it. If a group member is blocked on the completion of a task, it is that person’s 

responsibility to ask for help.  

Leadership 

1. Leadership roles for each team member (e.g., team organization, client interaction, 

individual component design, testing, etc.): Team organization & client interaction – 

Anthony, Hardware research – Joe, Embedded engineering and testing lead – Alex, 

Hypervisor & platform bring up – Hankel 

2. Strategies for supporting and guiding the work of all team members: Be transparent 

with your skills and deficiencies, allowing your fellow team members to aid in the 

completion of your individual role.  

3. Strategies for recognizing the contributions of all team members: Talk about what 

each team member accomplished over the week and what their goals are for the next 

week.  
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Collaboration and Inclusion 

1. Describe the skills, expertise, and unique perspectives each team member brings to 

the team: Each member comes from a similar knowledge base in terms of computer and 

electrical engineering knowledge. However, each member has a different focus in terms of 

specialized expertise (digital logic, operating systems, etc.).  

2. Strategies for encouraging and supporting contributions and ideas from all team 

members: Everyone on the team has a unique skill set and chance to contribute in a 

meaningful way, so clearly communicate what your strengths are. Help others when you 

have the chance to and take the opportunity to move the project forward when they are 

presented.  

3. Procedures for identifying and resolving collaboration or inclusion issues (e.g., how 

will a team member inform the team that the team environment is obstructing their 

opportunity or ability to contribute?): Members should be open about their progress 

and any environment issues in meetings so that they can be addressed quickly.  

Goal-Setting, Planning, and Execution 

1. Team goals for this semester: TBD. As stated above, we must first meet with our Boeing 

contact to get an in-depth overview of the complete project. Once we know that, we will 

discuss within the team what is reasonably achievable given the semester period.  

2. Strategies for planning and assigning individual and teamwork: Plan the major 

deliverables after our first meeting with Boeing rep. From there, fill out sub-tasks necessary 

to achieve these deliverables on time. Tasks will be assigned based on knowledge level and 

confidence in the subject. At the weekly member meetings on Sunday, tasks will be 

reviewed in terms of status and time frame, and other tasks will be created or removed as 

necessary to keep the project organized.  

3. Strategies for keeping on task: Set meaningful and achievable goals each week so that 

we can continuously make progress on the project.  

Consequences for Not Adhering to Team Contract 

1. How will you handle infractions of any of the obligations of this team 

contract?  Have a civil discussion as a team to see how we can fix the issue.  

2. What will your team do if the infractions continue? If the initial intra-team discussions 

prove unproductive, discuss recommendations with the project advisor.  

*************************************************************************** 

a. I participated in formulating the standards, roles, and procedures as stated in this contract. 

b. I understand that I am obligated to abide by these terms and conditions. 

c. I understand that if I do not abide by these terms and conditions, I will suffer the 

consequences as stated in this contract. 
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1) Joseph Dicklin       DATE 1/30/2024  

2) Hankel Haldin       DATE 1/30/2024  

3) Alexander Bashara                                                                  DATE 1/30/2024                

4) Anthony Manschula       DATE 1/30/2024  
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