Multicore Operational Analysis
Tooling (MOAT)

SENIOR DESIGN DEC’24 TEAM 09

Anthony Manschula, Alex Bashara, Joseph Dicklin, Hankel Haldin

Client: The Boeing Company
Advisors: Steve VanderlLeest (Boeing), Joe Zambreno (ISU), Phillip Jones (ISU)

IOWA STATE UNIVERSITY



Project Plan & Management

[OWA STATE UNIVERSITY Department of Electrical and Computer Engineering | 2




Problem Statement

* Increasing computational demand of avionics programs necessitates higher
performance systems
e Multicore systems can experience interference between shared resources
o Can cause system to stall for access and introduce unpredictable delay
o Practical example: Radio control program interferes with flight control program
e Airworthiness certification: Must bound the worst-case execution time to guarantee
that safety-critical processes complete in a certain amount of time

* How can we create an efficient multicore system while maintaining maximum safety?

[OWA STATE UNIVERSITY Department of Electrical and Computer Engineering |




IOWA STATE UNIVERSITY

Conceptual Sketch

Testing Platform

Device Hardware

X
f !

System Interference Generators - Cause
Resource Contention in the Target
Hardware

System Management and Performance
Monitoring/Data Collection

Performance Data Analysis

Figure 1: High-level view of the subsystems that comprise our design

Department of Electrical and Computer Engineering

l

4




Market Survey & Research

Pros

Cons

Multicore
Operational
Analysis
Tool (MOAT)

Open

source, built with
modern
hardware in mind

Produced under
tight time
deadlines

IOWA STATE UNIVERSITY

RapiDaemon

Designed by a team
of professional
engineers,
specifically, for
compliance testing

Closed source
& expensive

MASTECS

Offers timing
analysis software
and multicore
performance
consulting

Potential
portability issues to
North America

Figure 2: Market research summary

OTAWA (Open
Tool for
Adaptive WCET
Analysis)

Open

source, supports
several ISAs (e.g.,
ARM, RISC-V, etc.)

No recent builds,
not well-known

Multicore Test
Harness

Open source & has
good instructions

Very old;
development
stopped four years
ago

Department of Electrical and Computer Engineering

l




Functional Requirements

e Toolset must thoroughly and methodically stress the system in a reproducible way

* Toolset must focus on major points of resource contention (processor time, memory
usage, 10 bus usage, etc.)

* Accurately produce potential worst-case scenarios (i.e., a rogue process uses too much
CPU time/memory/I0 bandwidth)

* Toolset must collect and analyze performance data to demonstrate an upper bound on

worst-case execution time for our platform

[OWA STATE UNIVERSITY Department of Electrical and Computer Engineering |




Non-Functional Requirements

e Architecture - System must implement a processor based on the ARMvS8 instruction

set
* Form-factor - Single-board computer (Raspberry Pi, Pine64 family, etc.), or FPGA
board with Xilinx UltraScale+ MPSoC (Xilinx ZCU family or similar)

* Hypervisor — Our design must use a type 1 hypervisor (Xen) to partition underlying

system resources

IOWA STATE UNIVERSITY Department of Electrical and Computer Engineering |




Other Constraints and Considerations

User & Developer Knowledge Requirements:

* Working understanding of Linux environments and how they are structured in the
context of embedded systems

* Worst-case execution time and its influencing factors

* Familiarity with multi-core computer architectures, caching, memory, and I/0

User Interface Requirements:

 Command-line utility for automated testing

* GUI for easy interpretation of results by less technical users

[OWA STATE UNIVERSITY Department of Electrical and Computer Engineering |




Project Risks & Mitigations

Risk Mitigation
Challenges building hypervisor Team leverages industry experts at Boeing
Team lacks info to implement effective Selected hardware platform should have
base test cases and interference thorough documentation available
generators for the target platform
Project documentation is insufficient or Ensure that documentation is created and
ineffective updated for every task that team

members complete

Project runs into issues regarding handoff  Ensure all permissions and licensing are
and open-sourcing determined well in advance of the
project's completion

Figure 3: Project Risks & Mitigations

[OWA STATE UNIVERSITY Department of Electrical and Computer Engineering | 9




Resource & Cost Estimate

e Primarily a software project

o Linux, Xen, and build tools are open source
* Requires an ARM based development board

o Xilinx ZCU106 - $3,234.00

o Pine ROCKPro64 - $79.99

[OWA STATE UNIVERSITY Department of Electrical and Computer Engineering | 10




Project Milestones & Schedule

Deliverable

A report showing functioning hardware along with installation scripts
& documentation

A report outlining the interference channels identified by research

Presentation and report showing performance data generated from
interference tests without any mitigations

Comparative analysis report on interference tests with and without
performance mitigations enabled

Application with Ul enhancements and a report detailing statistical
analysis of WCET

Figure 4: Project Milestones & Schedule

Delivery Date

April 5th, 2024

April 11th, 2024
April 29th, 2024

September 10th,
2024

October 31st, 2024

IOWA STATE UNIVERSITY Department of Electrical and Computer Engineering | 11




System Design

[OWA STATE UNIVERSITY Department of Electrical and Computer Engineering | 12




Hardware/Software Utilization

* Hardware — Embedded Systems
o Pine ROCKPro64 Single-Board Computer
o Xilinx ZCU106 FPGA Development Board
* Software
o Linux for ARM-based Embedded Systems
= Yocto Project & Petalinux
o Hypervisors

= Xen

[OWA STATE UNIVERSITY Department of Electrical and Computer Engineering | 13




Component Decomposition

* Hardware — Consists of processor cores, memory, |/0O, etc.

* Xen Hypervisor — Manages hardware resource allocation to domains (guests) running
on the system

* Domain 0 (Dom0) - Linux environment manages configuration and operation of guest
domains (DomuU's), runs user interface utilities, and performs system performance
monitoring

* Guest Domains (DomU) - Hosts interference generators in bare metal and Linux
environments

* Interference Generators — Generate resource contention in shared hardware, such as

L2 cache or main memory

[OWA STATE UNIVERSITY Department of Electrical and Computer Engineering | 14




ROCKPRO64 SBC

Hardware Components
Hardware (CPU Cores, Cache, Memory, 1/0 Buses)

Xen Domains

B I O C k- Leve I Syste m Kernel Modules !

. Tooling Management Xen Hypervisor Layer
Diagram
|
How do the system pome PERF Kemel

Create required DomU

1 environments | et P S DomU (Bare DomU (Bare
components interact? ! ] ;) : Domu (Bare { {

| | DomO - Guest | ! ] Metal/Linux) - Metal/Linux) - Metal/Linux) -
i | veeroaey R DY Mem Bandwidth 1/0 Bandwidth
| I || Performance | Cache Stress s S
| ! and Base ! ! ! tress tress
| ! 1 | Measurement |
: | Programs | | |
! S L S ]

Set DomU hardware | : :
I

configuration based ! ! !

on received ] ! ‘
I
parameters ! : !

a - -
|
|
|

Control i £ | Userspace Scripts for Front-End Interface for Receive and Interpret Results

ontrol execution o i X
b tal st :——-- Managing Interference Setting Test Parametersand ~ «--- from Hardware Counters
are-metal stressors . X
T T Blirl ! Generators Viewing Results using PERF Framework
environments

—_————
———

Frontend-backend communication of parameters and results

Figure 5: Block-Level System Diagram

JOWA STATE UNIVERSITY Department of Electrical and Computer Engineering




Building Blocks — Xen Hypervisor

* A system with a functioning installation of Xen is critical VEBE B LT A T
to executing our project and fulfilling requirements Board-specific configurations and support layers
* Yocto Project and Petalinux l
o ) Build project
o Common frameworks for building embedded Linux |
images for ARM-based platforms U-boot script generation
o Not trivial: Including Xen in these builds requires |

Compile necessary boot binaries

l

Flash bootfiles and RootFS to SD card

hardware-specific changes
o The team has documented processes and created

scripts to ease future build efforts

Figure 6: Image configuration and build process

JOWA STATE UNIVERSITY Department of Electrical and Computer Engineering | 16




Building Blocks — How is Interference Created?

e Caused by simultaneous utilization of shared resources both on and off the SoC
o e.g., Cache, Memory, I/O

A process on one core may have to wait for a process on another core to finish its task
o Can lead to delays in processing

* One core may evict data that is needed by another core
o Causes more cache misses and longer memory access times

e Can force interference by abusing the processor architecture and structure

[OWA STATE UNIVERSITY Department of Electrical and Computer Engineering | 17




Processor Cores RK3399 SoC

Cache Contention Path
RK3399 CPU Core Subsystem
DRAM Contention Path

1/0 Subsystem ARM Cortex A72 ARM Cortex A72 ARM Cortex A53 ARM Cortex A53 ARM Cortex A53 ARM Cortex A53
Contention Path
L1 Cache L1 Cache L1 Cache L1 Cache L1 Cache L1 Cache

| ] | ] | )
|

CPU Arbitration Controller (L11Cache/DCache)

AXI/APB/ACE System Buses

L2 Cache Arbitration Controller

Shared L2 Cache

L2 Cache Miss - Fetch from DRAM

GMAC

Ethernet USB Host DDR Controller
Controller
Controller
Eth
thernet USB Hardware DDR Banks
Hardware

Figure 7: RK3399 SoC Shared Resource Diagram

IOWA STATE UNIVERSITY Department of Electrical and Computer Engineering




Test Cases — Interference Case Development (1/2)

* Interference test cases are designed to induce maximum contention in the target
resource
o Goal: Create a worst-case scenario for our control/base program as it also tries to
utilize that resource
* How do we make sure our test cases are effective?
o Performance profiling
= CacheGrind — Cache simulation: hits, misses, memory access

= PERF — Measure hardware performance counters

[OWA STATE UNIVERSITY Department of Electrical and Computer Engineering | 19




Test Cases — Interference Case Development (2/2)

CacheGrind simulation for an interference generator provides estimated instruction and

data cache hits and misses for a particular piece of code:

for (int i = 0; i < 262144 ; i++) {
cacheLineArray3[i % 16384].array64B[0] = 0xABCD;

}

Figure 8: Excerpt of source code of work-in-progress memory interference generator

Irr
2,883,584 (30.1%) ©

Figure 9: CacheGrind simulation output for source in Figure 8

IOWA STATE UNIVERSITY Department of Electrical and Computer Engineering | 20




Conclusion

[OWA STATE UNIVERSITY Department of Electrical and Computer Engineering | 21




Current Project Status

e Hardware bring up proved to be more time consuming than we initially anticipated
o Largely due to the time investment of researching and debugging hardware issues
o We still managed to get a functioning system (April 5th vs. April 14th)
e Despite overlap, we continued our research on each candidate platform
o This allowed us to make progress developing base cases for our platform
* Developed a strong foundation to continue stress test program development
o Interference testing report will be completed when class resumes in the fall

(originally April 29th)

[OWA STATE UNIVERSITY Department of Electrical and Computer Engineering | 22




Task Responsibility and Contributions

e Anthony Manschula — Project Coordinator and Memory Engineer
e Alexander Bashara — Embedded and Cache Engineer
* Hankel Haldin — Platform Bring-up Engineer

* Joseph Dicklin —1/0 Engineer

[OWA STATE UNIVERSITY Department of Electrical and Computer Engineering | 23




Plans for Future Work

Generate interference

e Mitigate interference

* Create a frontend user interface

e Explore other forms of interference
o Cache Coherency

* Identify existing gaps in preparation for project hand-off

[OWA STATE UNIVERSITY Department of Electrical and Computer Engineering | 24




Questions?

[OWA STATE UNIVERSITY Department of Electrical and Computer Engineering | 25




Supplemental Material

[OWA STATE UNIVERSITY Department of Electrical and Computer Engineering | 26



Important Engineering Standards and Advisories

* FAA AC20-193

o This advisory is concerned with the use and compliance of multi-core processors
in avionics systems.
e CAST-32A
o Position paper arguing on safety, performance, and integrity of airborne software
operating on multicore systems.
 ARINC653
o Defines acceptable methods of resource partitioning on hardware running

avionics programs

[OWA STATE UNIVERSITY Department of Electrical and Computer Engineering | 27




Users

* Avionics Engineers
o Responsible for developing and validating avionics systems
o Need a stress testing tool for their ARM-based hardware development platform
= Allows for effective validation of their work as engineers
* Avionics Engineering Managers
o Manage a team of Avionics Engineers
o Provide evidence that the projects they are managing can be certified under

military and civilian authority

[OWA STATE UNIVERSITY Department of Electrical and Computer Engineering | 28




Project Timeline (Gantt Chart)

Apr, 24

y Xen for functionality as built
Create build documentation
Research details of RockPro64 hardware for

lop Base Test Cases

ntroduce R
CPU Ca

Memo

th cor

JOWA STATE UNIVERSITY Department of Electrical and Computer Engineering 29




Project Timeline (Gantt Chart)

JOWA STATE UNIVERSITY Department of Electrical and Computer Engineering | 30



Hardware Selection Matrix

e Selection process involved evaluating
several different platforms for cost,
features, and support for the tools

necessary for our project

IOWA STATE UNIVERSITY

Hikey 960 AnetZUB-1CG RockPro64. Raspberry Pi

Xilinx ZCU106

Multicore Operational Analysis Tooling (MOAT) Hardware Selection

S

+ Large amount of community support
+ High volume of previous Xen on Pi

repositories

+ Easily accessible support/resource documents
+ Popular
« Meets ARM requirements

« Repositories we found were outdated (2-5

Years old)

- Closed source & proprietary bootloader
+ Requires a large amount of debugging work to

get old code to run

« Direct Xen on ARM support (located on the

Xen Wiki)

+ Readily available hardware - can be acquired

quickly unlike other boards

« Previous Xen on RockPro project resources

available

+ Easily accessible open source documents

- Long delivery time after purchase

+ Cheaper option compared to other possible

FPGA (Field Programable Gate Array) boards

« Xilinx Ultrascale+ MPSoC has direct

contributions to the Xen Hypervisor project

« Large volume of resources/support

documents

« ZUB-1CG is not officially supported

+ Meets ARM requirements

- Old hardware
- Unable to source from a reputable seller

- Large volume of documentation
« Direct Xen on Xilinx build information
* Meets Xen/ARM requirements

+ Price ($1700)

Department of Electrical and Computer Engineering

31



GUI Example

ontention Manager - Cache Misses vs. Time
60
. ¥
50
. ¥
g 40
LV T
. ¥ 3 2
LV 10
0

1 2 3 - 5 6 7 8 9 10 41 22 13 14

Time (seconds)

[OWA STATE UNIVERSITY Department of Electrical and Computer Engineering | 32




Source Code of Mem Stress Program

int main(int argc, charx argv[]) {
// printf("cacheLine size is %d bytes\n", sizeof(struct cachelLine));

//1MiB arrays
//L2 on the RK3399 is 1MiB, 16-way associative
cacheLineArrayl = (struct cacheLinex)malloc(16384 * sizeof(struct cacheLine));
X cacheLineArray2 (struct cacheLinex)malloc(16384 * sizeof(struct cachelLine));
struct cachelLine { cacheLineArray3 = (struct cacheLinex)malloc(16384 * sizeof(struct cacheLine))

//64 bytes total per struct
//L2 has 64-byte lines

unsigned int array64B[16]; for (unsigned int i = @; i < 262144 % 1000 ; i++) {

VES
Each array is 1MiB, and L2 is 1MiB total. It should never be possible for any
of these arrays to exist entirely in L2 or L1 given the sequential access order.
By the time we loop back to the first index of the cacheLineArrays, the cached data for that
index will already have been ejected ~11000 iterations ago.

*/

cacheLineArrayl[i % 16384].array64B[0] = OxDEAD;

cacheLineArray2[i % 16384].array64B[0] = OxBEEF;

cacheLineArray3[i % 16384].array64B[0] = @0xABCD;

signal(SIGINT, graceful_exit);

}

free(cacheLineArrayl);
free(cacheLineArray2);
free(cacheLineArray3);

IOWA STATE UNIVERSITY Department of Electrical and Computer Engineering




Example Perf Output

2120 cache refill,mem access ./

Performance counter stats for './mem_stress.cache_aarch64':
25916761481 cpu_cycles:u
1631947979 12d_cache:u
779192265 12d_cache_refill:u
3145736108 mem_access:u

21.777850882 seconds time elapsed

21.766157000 seconds user
0.000000000 seconds sys

IOWA STATE UNIVERSITY Department of Electrical and Computer Engineering | 34




